對于項數(shù)都為m的數(shù)列{an}和{bn},記bk為a1,a2,…,ak(k=1,2,…,m)中的最小值,給出下列命題:
①若數(shù)列{bn}的前5項依次為5,5,3,3,1,則a4=3;
②若數(shù)列{bn}是遞減數(shù)列,則數(shù)列{an}也是遞減數(shù)列;
③數(shù)列{bn}可能是先遞減后遞增的數(shù)列;
④若數(shù)列{an}是遞增數(shù)列,則數(shù)列{bn}是常數(shù)列.
其中,是真命題的為( 。
A、①④B、①③C、②③D、②④
分析:①數(shù)列{bn}的前5項依次為5,5,3,3,1可推出a3=3,a4≥3即可;
②{an}是遞減數(shù)列等價于{bn}是遞減數(shù)列;
③④數(shù)列{an}遞增或常數(shù)列,則{bn}是常數(shù)列,數(shù)列{an}遞減,則{bn}是遞減.
解答:解:①由數(shù)列{bn}的前5項依次為5,5,3,3,1,
可知a1=5,a2≥5,a3=3,a4≥3,
∴①錯誤;
②若數(shù)列{bn}是遞減數(shù)列,則數(shù)列{an}也是遞減數(shù)列是正確的;
若數(shù)列{an}是遞增數(shù)列或常數(shù)列時,則{bn}是常數(shù)列,
若數(shù)列{an}是遞減數(shù)列時,則{bn}是遞減的,
∴③是錯誤的;④是正確的.
故選:D.
點評:本題考查遞減數(shù)列和遞增數(shù)列的性質(zhì),和數(shù)列概念的應(yīng)用.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,…ak(k≤m)中最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.若m=4,則創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn} 為
3,4,2,1或3,4,1,2
3,4,2,1或3,4,1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青浦區(qū)一模)設(shè)m>3,對于項數(shù)m的有窮數(shù)列{an},令bk為a1,a2,…,ak(k≤m)中最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1,2,…,m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.
(1)若m=4,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列{cn};
(2)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列{cn}的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海)我們在下面的表格內(nèi)填寫數(shù)值:先將第1行的所有空格填上1;再把一個首項為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為B1,B2,…,Bn,試用n,q表示B1+B2+…+Bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實數(shù)q,c1+c3>2c2
(3)請在以下兩個問題中選擇一個進行研究 (只能選擇一個問題,如果都選,被認為選擇了第一問).
①能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項c1,c2,…,cm (m≥3)成為等比數(shù)列?若能找到,m的值有多少個?若不能找到,說明理由.
②能否找到q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項各自依次成等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)設(shè)m>3,對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,a3…ak(k≤m)中的最大值,稱數(shù)列{bn}為{an}的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.考查自然數(shù)1、2…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn}.
(Ⅰ)若m=5,寫出創(chuàng)新數(shù)列為3,5,5,5,5的所有數(shù)列{cn};
(Ⅱ)是否存在數(shù)列{cn}的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由;
(Ⅲ)是否存在數(shù)列{cn},使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出所有符合條件的數(shù)列{cn}的個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案