11.已知等比數(shù)列{an}的各項均為正數(shù),且滿足:a1a9=4,則數(shù)列{log2an}的前9項之和為9.

分析 由已知結(jié)合等比數(shù)列的性質(zhì)求得a5,再由對數(shù)的運算性質(zhì)得答案.

解答 解:∵an>0,且a1a9=4,
∴${{a}_{5}}^{2}={a}_{1}{a}_{9}=4$,a5=2.
∴l(xiāng)og2a1+log2a2+…+log2a9
=$lo{g}_{2}({a}_{1}{a}_{2}…{a}_{9})=lo{g}_{2}{{a}_{5}}^{9}=9lo{g}_{2}{a}_{5}$=9log22=9.
故答案為:9.

點評 本題考查對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若角θ的終邊過點P(3,-4),則tan(θ+π)=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x^2}{4}$-ax+cosx(a∈R),x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(Ⅰ)若函數(shù)f(x)是偶函數(shù),試求a的值;
(Ⅱ)當(dāng)a>0時,求證:函數(shù)f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合M={x|y=$\sqrt{x-3}$+$\sqrt{3-x}$},N={y|y=$\sqrt{x-3}$•$\sqrt{3-x}$} 則下列結(jié)論正確的是(  )
A.M=NB.M∩N={3}C.M∪N={0}D.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={x|0≤x≤2},B={x|-1<x≤1},則A∩B={x|0≤x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為An,對任意n∈N*滿足$\frac{{{A_{n+1}}}}{n+1}$-$\frac{A_n}{n}$=$\frac{1}{2}$,且a1=1,數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=5,其前9項和為63.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=$\frac{b_n}{a_n}$+$\frac{a_n}{b_n}$,數(shù)列{cn}的前n項和為Tn,若對任意正整數(shù)n,都有Tn≥2n+a,求實數(shù)a的取值范圍;
(3)將數(shù)列{an},{bn}的項按照“當(dāng)n為奇數(shù)時,an放在前面;當(dāng)n為偶數(shù)時,bn放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求這個新數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題是真命題的是( 。
A.若m∥α,m∥β,則α∥βB.若m∥α,α∥β,則m∥βC.若m?α,m⊥β,則α⊥βD.若m?α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系中,已知兩點A(2,-1)和B(-1,5),點P滿足$\overrightarrow{AP}$=2$\overrightarrow{PB}$,則點P的坐標(biāo)為(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在一次數(shù)學(xué)測驗后,班級學(xué)委對選答題的選題情況進(jìn)行了統(tǒng)計,如下表:(單位:人)
幾何證明選講坐標(biāo)系與參數(shù)方程不等式選講合計
男同學(xué)124622
女同學(xué)081220
合計12121842
在原統(tǒng)計結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知兩名數(shù)學(xué)科代表都在選做《不等式選講》的同學(xué)中.
(Ⅰ)求在選做“坐標(biāo)系與參數(shù)方程”的同學(xué)中,至少有一名女生參加座談的概率;
(Ⅱ)記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案