精英家教網 > 高中數學 > 題目詳情

已知等差數列{an}的首項為a,公差為d,且方程ax2-3x+2=0的解為1,d.
(1)求{an}的通項公式及前n項和公式;
(2)求數列{3n-1an}的前n項和Tn.

(1) an=2n-1   Sn=n2  (2) Tn=1+(n-1)·3n

解析解:(1)方程ax2-3x+2=0的兩根為1,d.
所以a=1,d=2.
由此知an=1+2(n-1)=2n-1,前n項和Sn=n2.
(2)令bn=3n-1an=(2n-1)·3n-1,
則Tn=b1+b2+b3+…+bn=1·1+3·3+5·32+…+(2n-1)·3n-1,
3Tn=1·3+3·32+5·32+…+(2n-3)·3n-1+(2n-1)·3n,
兩式相減,得-2Tn=1+2·3+2·32+…+2·3n-1-(2n-1)·3n=1+-(2n-1)·3n=-2-2(n-1)·3n.
∴Tn=1+(n-1)·3n.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

的圖像與直線相切,并且切點橫坐標依次成公差為的等差數列.
(1)求的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對邊.若是函數圖象的一個對稱中心,且a=4,求ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為公差不為零的等差數列,首項,的部分項、、恰為等比數列,且,.
(1)求數列的通項公式(用表示);
(2)若數列的前項和為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的前三項依次為a,4,3a,前n項和為Sn,且Sk=110.
(1)求a及k的值;
(2)設數列{bn}的通項bn,證明數列{bn}是等差數列,并求其前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

正項數列{an}滿足-(2n-1)an-2n=0.
(1)求數列{an}的通項公式an;
(2)令bn=,求數列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

己知各項均不相等的等差數列{an}的前四項和S4=14,且a1,a3,a7成等比數列.
(1)求數列{an}的通項公式;
(2)設Tn為數列的前n項和,若Tn¨對恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通項公式.
(2)求數列{}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列{an}滿足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常數.
(1)當a2=-1時,求λ及a3的值.
(2)數列{an}是否可能為等差數列?若可能,求出它的通項公式;若不可能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知單調遞增的等比數列{an}滿足:
a2a3a4=28,且a3+2是a2a4的等差中項.
(1)求數列{an}的通項公式an
(2)令bnanlogan,Snb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整數n.

查看答案和解析>>

同步練習冊答案