【題目】已知函數(shù)為正常數(shù).
⑴若,且,求函數(shù)的單調(diào)增區(qū)間;
⑵在⑴中當(dāng)時,函數(shù)的圖象上任意不同的兩點,線段的中點為,記直線的斜率為,試證明: .
⑶若,且對任意的, ,都有,求的取值范圍.
【答案】(1)單調(diào)增區(qū)間為. (2)見解析(3)
【解析】試題分析:(1)由題意先求出 的解析式,然后求其導(dǎo)函數(shù),令導(dǎo)函數(shù)大于 ,解出的即為函數(shù)的增區(qū)間;(2)對于當(dāng) 時,先求出 的解析式,然后求導(dǎo)函數(shù),得到 ,在利用斜率公式求出過這兩點的斜率公式,利用構(gòu)造函數(shù)并利用構(gòu)造函數(shù)的單調(diào)性比較大。唬3)因為 ,且對任意 ,都有 ,先寫出 的解析式,利用該函數(shù)的單調(diào)性把問題轉(zhuǎn)化為恒成立問題進行求解.
試題解析:⑴∵a,令得x>3或0<x<,∴函數(shù)的單調(diào)增區(qū)間為.
⑵證明:當(dāng)時∴, ∴,又
不妨設(shè) , 要比較與的大小,即比較與的大小,又∵,∴ 即比較與的大。 令,則,
∴在上位增函數(shù).又,∴, ∴,即
⑶∵,∴ 由題意得在區(qū)間上是減函數(shù).
當(dāng), ∴由在恒成立.設(shè), ,則∴在上為增函數(shù),∴.
當(dāng),∴ 由
在恒成立
設(shè) , 為增函數(shù),∴綜上:a的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), , 為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個零點,求的取值范圍;
(Ⅱ)若對任意, , 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中實數(shù).
(1)若,求函數(shù)在上的最值;
(2)若,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為(-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當(dāng)x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若,求曲線在處的切線方程;
(2)若無零點,求實數(shù)的取值范圍;
(3)若有兩個相異零點,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為其定義域內(nèi)的奇函數(shù).
(1)求實數(shù)的值;
(2)求不等式的解集;
(3)證明: 為無理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn;
(2)設(shè),求證 :b1+b2+…+bn<1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com