設F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,過F1傾斜角為45°的直線與雙曲線的右支交于點P,若|PF2|=|F1F2|,雙曲線的離心率為( 。
A、
2
B、
2
+1
C、
2
-1
D、2
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:shechu8雙曲線的焦點,由條件可得三角形PF1F2為等腰直角三角形,求得|PF1|,再由雙曲線的定義和離心率公式計算即可得到.
解答: 解:設雙曲線
x2
a2
-
y2
b2
=1的焦點為F1(-c,0),
由于|PF2|=|F1F2|=2c,
由∠PF1F2=45°,則三角形PF1F2為直角三角形,
則有|PF1|=2
2
c,
由雙曲線的定義可得,|PF1|=2a+2c,
由2
2
c=2a+2c,即有c=(
2
+1)a,
即e=
c
a
=
2
+1.
故選B.
點評:本題考查雙曲線的定義、方程和性質(zhì),考查離心率的求法,運用定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(1-t,1-t,t),
b
=(2,t,t+1),則|
a
-
b
|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F為雙曲線C:x2-my2=3m(m>0)的一個焦點,則點F到C的一條漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線與橢圓
x2
16
+
y2
7
=1
共焦點,雙曲線的離心率為
3
2

(1)求橢圓長軸長、離心率.        
(2)求雙曲線方程和漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電子商務在我國發(fā)展迅猛,網(wǎng)上購物成為很多人的選擇.某購物網(wǎng)站組織了一次促銷活動,在網(wǎng)頁的界面上打出廣告:高級口香糖,10元錢三瓶,有8種口味供你選擇(其中有一種為草莓口味).小王點擊進入網(wǎng)頁一看,只見有很多包裝完全相同的瓶裝口香糖排在一起,看不見具體口味,由購買者隨機點擊進行選擇.(各種口味的高級口香糖均超過3瓶,且各種口味的瓶數(shù)相同,每點擊選擇一瓶后,網(wǎng)頁自動補充相應的口香糖.)
(1)小王花10元錢買三瓶,請問小王共有多少種不同組合選擇方式?
(2)小王花10元錢買三瓶,由小王隨機點擊三瓶,請列出有小王喜歡的草莓味口香糖瓶數(shù)ξ的分布列,并計算其數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市圖書館有三部電梯,每位乘客選擇哪部電梯到閱覽室的概率都是
1
3
.現(xiàn)有5位乘客準備乘電梯到閱覽室.
(1)求5位乘客選擇乘同一部電梯到閱覽室的概率;
(2)若記5位乘客中乘第一部電梯到閱覽室的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
的夾角為
3
,|
a
|=
2
,則
a
b
方向上的投影為( 。
A、
6
2
B、
2
2
C、-
2
2
D、-
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個命題:
①“若-2≤x≤0,則(x+2)(x-3)≤0”的逆否命題;
②x>2是x2-3x+2>0的充分不必要條件;
③平面內(nèi)有兩定點A,B及動點P,則命題甲“|PA|+|PB|是定值”是命題乙“點P的軌跡是以A,B為焦點的橢圓”的充要條件;
④“a=1”是“函數(shù)y=cos(2ax)的最小正周期為π”的充要條件;
其中真命題的序號是(寫出所有的真命題)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“H病毒”的藥物,經(jīng)試驗,服用甲、乙兩種藥物痊愈的概率分別為
1
2
,
1
3
,現(xiàn)已進入藥物臨床試用階段,每個試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)人數(shù)超過乙種抗病毒藥物的治愈人數(shù),則稱該組為“甲類組”,
(1)求一個試用組為“甲類組”的概率;
(2)觀察3個試用組,用η表示這3個試用組中“甲類組”的個數(shù),求η的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案