已知數(shù)學(xué)公式,x∈(1,+∞),f(2)=3
(1)求a;
(2)判斷并證明函數(shù)單調(diào)性.

解:(1)∵,x∈(1,+∞),f(2)=3
,
解得a=1.
(2)∴
函數(shù)在區(qū)間(1,+∞)是單調(diào)減函數(shù).理由如下:
設(shè)1<x1<x2,f(x2)-f(x1)=-=
因?yàn)?<x1<x2,,所以x1-x2<0,x1-1>0,x2-1>0,
所以f(x2)-f(x1)<0,即f(x2)<f(x1
所以函數(shù)在區(qū)間(1,+∞)是單調(diào)減函數(shù).
分析:(1)由已知中函數(shù)的解析式,將x=2,f(2)=3代入構(gòu)造a的方程,解方程可得答案.
(2)任取1<x1<x2,我們構(gòu)造出f(x2)-f(x1)的表達(dá)式,根據(jù)實(shí)數(shù)的性質(zhì),我們易出f(x2)-f(x1)的符號(hào),進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,得到答案.
點(diǎn)評(píng):本題主要考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的判斷與證明,其中作差法(定義法)證明函數(shù)的單調(diào)性是我們中學(xué)階段證明函數(shù)單調(diào)性最重要的方法,一定要掌握其解的格式和步驟.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x+2ay-1=0與直線(3a-1)x-ay-1=0平行,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
(2a-1)x+a    ,(x<1)
logax           ,(x≥1)
是(-∞,+∞)上的減函數(shù),那么a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知A={x|m+1≤x≤3m-1},B={x|1≤x≤10},且A⊆B,則實(shí)數(shù)m的取值范圍.
(2)將(1)中的條件“A={x|m+1≤x≤3m-1}”改為“A=(m+1,3m-1)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2+1(x≤0)
1(x>0)
,則滿足不等式f(1-x2)<f(2x)的x的取值范圍是
(-1-
2
,0)
(-1-
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2x+1(x>0)
π(x=0)
x+3(x<0)
,則f(f(f(-3)))=
2π+1
2π+1

查看答案和解析>>

同步練習(xí)冊(cè)答案