3.若正實(shí)數(shù)a,b滿足$a+b+\frac{1}{a}+\frac{1}=5$,則a+b的最大值為(  )
A.2B.3C.4D.5

分析 正實(shí)數(shù)a,b滿足$a+b+\frac{1}{a}+\frac{1}=5$,可得(a+b)[5-(a+b)]=(a+b)$(\frac{1}{a}+\frac{1})$=2+$\frac{a}+\frac{a}$,再利用基本不等式的性質(zhì)、一元二次不等式的解法即可得出.

解答 解:∵正實(shí)數(shù)a,b滿足$a+b+\frac{1}{a}+\frac{1}=5$,
∴(a+b)[5-(a+b)]=(a+b)$(\frac{1}{a}+\frac{1})$=2+$\frac{a}+\frac{a}$≥2+2$\sqrt{\frac{a}•\frac{a}}$=4,當(dāng)且僅當(dāng)a=b=$\frac{1}{2}$或2時(shí)取等號(hào).
∴(a+b)2-5(a+b)+4≤0,解得1≤a+b≤4,
則a+b的最大值為4.
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、方程思想、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列對(duì)概率的說法正確的是( 。
A.不可能事件不可能有概率B.任何事件都有概率
C.隨機(jī)事件不全有概率D.必然事件沒有概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,a1=-1,d=4,則它的通項(xiàng)公式是( 。
A.an=-4n+3B.an=-4n-3C.an=4n-5D.an=4n+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距為10,點(diǎn)P(2,1)在其漸近線上,則該雙曲線的方程為( 。
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上的一點(diǎn),已知|AF|=3,直線OA的斜率為$\sqrt{2}$(O為坐標(biāo)原點(diǎn)).
(1)求拋物線C的方程;
(2)過焦點(diǎn)F作兩條互相垂直的直線l1、l2,設(shè)l1與C交于B、D兩點(diǎn),l2與C交于C、E兩點(diǎn),求四邊形BCDE面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某校周四下午第五、六兩節(jié)是選修課時(shí)間,現(xiàn)有甲、乙、丙、丁四位教師可開課.已知甲、乙教師各自最多可以開設(shè)兩節(jié)課,丙、丁教師各自最多可以開設(shè)一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開課(不必考慮教師所開課的班級(jí)和內(nèi)容),則不同的開課方案共有19種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$為非零向量且相互不共線,下面四個(gè)命題:其中正確的是( 。
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不與\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.偶函數(shù)f(x)在x>0時(shí),函數(shù)f′(x)=x2+ax+b,則f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$S(n)=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{n^2}(n∈{{N}^*})$,當(dāng)n=2時(shí),S(2)=$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$.(溫馨提示:只填式子,不用計(jì)算最終結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案