18.在空間中,若直線a與b無公共點,則直線a、b的位置關(guān)系是平行或異面.

分析 根據(jù)直線a,b是否共面得出結(jié)論.

解答 解;當a,b在同一個平面上時,a,b平行;
當a,b不在同一個平面上時,a,b異面.
故答案為:平行或異面.

點評 本題考查了空間直線的位置關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.三棱錐O-ABC中,M,N分別是AB,OC的中點,且$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{NM}$,則$\overrightarrow{NM}$等于( 。
A.$\frac{1}{2}$(-$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$)C.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$)D.$\frac{1}{2}$(-$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若不等式t2-at+1≥0對任意的t∈R+恒成立,則實數(shù)a的取值范圍是a≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ex-$\frac{1}{{e}^{x}}$,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的奇函數(shù);
(2)試判斷方程f(x)=$\frac{{e}^{2}-1}{e}$的實根的個數(shù);
(3)若關(guān)于x的不等式mf(x)≤e-x-m-1在(0,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知經(jīng)過點A(-3,-2)的直線與拋物線C:x2=8y在第二象限相切于點B,記拋物線C的焦點為F,則直線BF的斜率是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)α與β是關(guān)于x的方程x2+2x+m=0的兩個虛數(shù)根,若α、β、0在復平面上對應的點構(gòu)成直角三角形,那么實數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)直線y=$\frac{1}{2}$x+2與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1交于A、B兩點,O為坐標原點,求:
(1)以線段AB為直徑的圓的標準方程;
(2)若OA、OB所在直線的斜率分別是kOA、kOB,求kOA•kOB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=$\sqrt{4-2x}$+log2(x-1)的定義域是(1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若P⊆U,Q⊆U,且x∈CU(P∩Q),則( 。
A.x∉P且x∉QB.x∉P或x∉QC.x∈CU(P∪Q)D.x∈CUP

查看答案和解析>>

同步練習冊答案