16.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=10,S20=30,則S30=( 。
A.10B.70C.30D.90

分析 由等比數(shù)列的性質(zhì)可得,S10,S20-S10,S30-S20成等比數(shù)列即(S20-S102=S10•(S30-S20),代入可求.

解答 解:由等比數(shù)列的性質(zhì)可得,S10,S20-S10,S30-S20成等比數(shù)列
∴(S20-S102=S10•(S30-S20
∴400=10(S30-30)
∴S30=70
故選:B.

點(diǎn)評(píng) 本題主要考查了等比數(shù)列的性質(zhì)(若Sn為等比數(shù)列的前n項(xiàng)和,且Sk,S2k-Sk,S3k-S2k不為0,則其成等比數(shù)列)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{|x|}{x+2}$-kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.k<0B.k<1C.0<k<1D.k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.銳角三角形ABC的面積為10$\sqrt{3}$,且AB=5,AC=8,則BC=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,a=2,b=3,則$\frac{sinA}{sinB}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知關(guān)于x的不等式ax2+(a-1)x+a-1<0對(duì)于所有的實(shí)數(shù)x都成立,則a的取值范圍是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列前n項(xiàng)和Sn,Sn=2n2-3n,(n∈N*),求它的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓x2+y2+2x+4y+1=0上到直線x+y+1=0的距離為1的點(diǎn)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)結(jié)論正確的個(gè)數(shù)是( 。
①若n組數(shù)據(jù)(x1,y1),…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1
②回歸直線就是散點(diǎn)圖中經(jīng)過樣本數(shù)據(jù)點(diǎn)最多的那條直線
③已知點(diǎn)A(-1,0),B(1,0),若|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡為橢圓
④設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2.5個(gè)單位.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等差數(shù)列{an}的公差d≠0,且a1、a3、a9成等比數(shù)列,則$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$的值是$\frac{5}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案