已知某四棱臺的三視圖如圖所示,則該四棱臺的體積是( 。
A、
16
3
B、4
C、
14
3
D、6
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:根據(jù)四棱臺的三視圖,得出該四棱臺的結構特征是什么,由此計算它的體積即可.
解答: 解:根據(jù)四棱臺的三視圖,得:該四棱臺是上、下底面為正方形,高為2的直四棱臺,
且下底面正四邊形的邊長為2,上底面正四邊形的邊長為1;
∴該四棱臺的體積為
V四棱臺=
1
3
×(12+
12×22
+22)×2=
14
3

故選:C.
點評:本題利用空間幾何體的三視圖求幾何體的體積的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若對任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,則稱函數(shù)f(x)為函數(shù)f1(x)到函數(shù)f2(x)在區(qū)間D上的“折中函數(shù)”.已知函數(shù)f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)lnx,且f(x)是g(x)到h(x)在區(qū)間[1,2e]上的“折中函數(shù)”,則實數(shù)k的值構成的集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠C=2∠A,a+c=10,cosA=
3
4
,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將4名新來的學生分到高三兩個班,每班至少一人,不同的分配方法數(shù)為( 。
A、12B、16C、14D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式|x+7|-|3x-4|+
2
-1>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為6,離心率e=
6
3
,O為坐標原點.
(Ⅰ)求橢圓E標準方程;
(Ⅱ)設P(x1,y1),Q(x2,y2)是橢圓E上的兩點,
m
=(x1,
3
y1),
n
=(x2,
3
y2)
,且
m
n
=0
,設M(x0,y0),且
OM
=cosθ•
OP
+sinθ•
OQ
(θ∈R),求x02+3y02的值;
(Ⅲ)如圖,若分別過橢圓E的左右焦點F1,F(xiàn)2的動直線?1,?2相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點M、N,使得|PM|+|PN|為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:函數(shù)f(x)=2+
1
x
在(0,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(3
x
-
2
5x
n(n∈N*)的展開式中含有常數(shù)項,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={x|
1
x
<1},則∁RM等于(  )
A、{x|x≤1}
B、{x|0<x≤1}
C、{x|0≤x≤1}
D、{x|x<1}

查看答案和解析>>

同步練習冊答案