(本小題滿分12分)
如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB.
D、E分別為棱C1C、B1C1的中點(diǎn).
(1)求二面角B—A1D—A的平面角余弦值;
(2)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?
若存在,確定其位置并證明結(jié)論;若不存在,說明理由.
(Ⅰ) (Ⅱ) AC中點(diǎn)
法一:(1)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,
連結(jié)BM∵BC⊥平面ACC??1A1 ∴CM為BM在平面A1C1CA的內(nèi)射影∴BM⊥A1G
∴∠CMB為二面角B—A1D—A的平面角 平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)∴CG=2,DC=1 在直角三角形CDG中, , 余弦值為 6分
(2)在線段AC上存在一點(diǎn)F,使得EF⊥平面A1BD其位置為AC中點(diǎn),證明如下:
∵A1B1C1—ABC為直三棱柱 , ∴B1C1//BC∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA
∵EF在平面A1C1CA內(nèi)的射影為C1F ,F(xiàn)為AC中點(diǎn) ∴C1F⊥A1D ∴EF⊥A1D同理可證EF⊥BD,∴EF⊥平面A1BD∵E為定點(diǎn),平面A1BD為定平面,點(diǎn)F唯一 …………12分
解法二:(1)∵A1B1C1—ABC為直三棱住 C1C=CB=CA=2 , AC⊥CB D、E分別為C1C、B1C1的中點(diǎn), 建立如圖所示的坐標(biāo)系得C(0,0,0) B(2,0,0) A(0,2,0)
C1(0,0,2) B1(2,0,2) A??1(0,2,2)D(0,0,1) E(1,0,2)
設(shè)平面A1BD的法向量為n=(1,)
平面ACC1A1??的法向量為=(1,0,0)
(2)在線段AC上存在一點(diǎn)F,設(shè)F(0,y,0)使得EF⊥平面A1BD
欲使EF⊥平面A1BD 由(2)知,當(dāng)且僅當(dāng)//
∴存在唯一一點(diǎn)F(0,1,0)滿足條件. 即點(diǎn)F為AC中點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com