已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0)
,M,N是雙曲線上關(guān)于原點對稱的兩點,P是雙曲線上的動點,且直線PM,PN的斜率分別為k1,k2,k1k2≠0,若|k1|+|k2|的最小值為1,則雙曲線的離心率為( 。
分析:先假設(shè)點的坐標(biāo),代入雙曲線方程,利用點差法,可得斜率之間為定值,再利用|k1|+|k2|的最小值為1,即可求得雙曲線的離心率.
解答:解:由題意,可設(shè)點M(p,q),N(-p,-q),P(s,t).
p2
a2
-
q2
b2
=1
,且
s2
a2
-
t2
b2
=1

兩式相減得
t2-q2
s2-p2
=
b2
a2

再由斜率公式得:k1k2=
t2-q2
s2-p2
=
b2
a2

∵|k1|+|k2|
2b
a

根據(jù)|k1|+|k2|的最小值為1,可知
2b
a
=1

e=
c
a
=
5
2

故選B.
點評:本題以雙曲線為載體,考查雙曲線的性質(zhì),關(guān)鍵是利用點差法,求得斜率之積為定值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案