【題目】拋物線(xiàn)的弦與過(guò)弦的端點(diǎn)的兩條切線(xiàn)所圍成的三角形常被稱(chēng)為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線(xiàn)的弦過(guò)焦點(diǎn),則過(guò)弦的端點(diǎn)的兩條切線(xiàn)的交點(diǎn)在其準(zhǔn)線(xiàn)上.設(shè)拋物線(xiàn) >,弦AB過(guò)焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為
A. B. C. D.
【答案】B
【解析】分析:設(shè),設(shè)直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立可求得焦點(diǎn)弦的性質(zhì),設(shè)切線(xiàn)方程分別與拋物線(xiàn)方程聯(lián)立可求得兩切線(xiàn)的斜率之間的的關(guān)系,得兩切線(xiàn)相互垂直,從而知,因此有,當(dāng)最小時(shí),三角形面積最。
詳解:如圖所示,設(shè),則,
設(shè)直線(xiàn),聯(lián)立,
化為,
∴,.
設(shè)過(guò)點(diǎn)的切線(xiàn)為,
由得,
∵直線(xiàn)為切線(xiàn),
∴,化簡(jiǎn)得,
同理設(shè)過(guò)點(diǎn)的切線(xiàn)斜率為,可得,
∴,∴,∴,即兩切線(xiàn)垂直,是直角三角形.
∴,當(dāng)且僅當(dāng)為通徑時(shí)等號(hào)成立.
,
∴當(dāng)最小時(shí),最。的最小值為.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線(xiàn)段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得25萬(wàn)元~ 1600萬(wàn)元的投資收益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,獎(jiǎng)金不超過(guò)75萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.(即:設(shè)獎(jiǎng)勵(lì)方案函數(shù)模型為y=f (x)時(shí),則公司對(duì)函數(shù)模型的基本要求是:當(dāng)x∈[25,1600]時(shí),①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎(jiǎng)勵(lì)方案函數(shù)模型的要求,并說(shuō)明理由;
(2)已知函數(shù)符合公司獎(jiǎng)勵(lì)方案函數(shù)模型要求,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.曲線(xiàn)C1的極坐標(biāo)方程為ρ=4cosθ,直線(xiàn)l: ( 為參數(shù)).
(1)求曲線(xiàn)C1的直角坐標(biāo)方程及直線(xiàn)l的普通方程;
(2)若曲線(xiàn)C2的參數(shù)方程為 (α為參數(shù)),曲線(xiàn)P(x0 , y0)上點(diǎn)P的極坐標(biāo)為 ,Q為曲線(xiàn)C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線(xiàn)l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鞏固全國(guó)文明城市創(chuàng)建成果,今年吉安市開(kāi)展了拆除違章搭建鐵皮棚專(zhuān)項(xiàng)整治行為.為了了解市民對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度,隨機(jī)從存在違章搭建的戶(hù)主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
支持 | 反對(duì) | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對(duì)此項(xiàng)工作的“支持”與“反對(duì)”態(tài)度與“性別”有關(guān);
(2)現(xiàn)從參與調(diào)查的女戶(hù)主中按分層抽樣的方法抽取人進(jìn)行調(diào)查,分別求出所抽取的人中持“支持”和“反對(duì)”態(tài)度的人數(shù);
(3)現(xiàn)從(2)中所抽取的人中,再隨機(jī)抽取人贈(zèng)送小品,求恰好抽到人持“支持”態(tài)度的概率?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,與均是以為直角頂點(diǎn)的等腰直角三角形,點(diǎn)是的中點(diǎn),點(diǎn)是邊上的任意一點(diǎn).
(1)求證::
(2)在平面中,是否總存在與平面平行的直線(xiàn)?若存在,請(qǐng)作出圖形并說(shuō)明:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測(cè)算,每噴灑1個(gè)單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時(shí)刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時(shí),它才能起到去污作用.
(Ⅰ)若一次噴灑4個(gè)單位的去污劑,則去污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次噴灑2個(gè)單位的去污劑,6天后再?lài)姙?/span> 個(gè)單位的去污劑,要使接下來(lái)的4天中能夠持續(xù)有效去污,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線(xiàn)l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線(xiàn)l2 , l1⊥l2 , 線(xiàn)段AF的垂直平分線(xiàn)與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線(xiàn)l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線(xiàn)PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)過(guò)點(diǎn)且與曲線(xiàn)相交于,兩點(diǎn).
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)若,求直線(xiàn)的直角坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com