分析 (1)確定直線l恒過定點(diǎn)A(1,1),定點(diǎn)A(1,1)在圓內(nèi),即可證明直線l與圓C相交;
(2)直線被⊙C截得的線段最短時(shí),CA⊥l,即可得出結(jié)論.
解答 (1)證明:∵直線l的方程為mx-y+1-m=0,
∴m(x-1)-y+1=0,
令x-1=0,-y+1=0,∴x=1,y=1,
∴直線l恒過定點(diǎn)A(1,1),
∴12+(1-1)2=1<5,
∴定點(diǎn)A(1,1)在圓內(nèi),
∴直線l與圓C相交;
(2)解:直線被⊙C截得的線段最短時(shí),CA⊥l,
∵kCA=0,
∴直線l的方程為x=1.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的判定,直線過定點(diǎn)問題,求點(diǎn)的軌跡方程,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{80}{\begin{array}{l}3\end{array}}$ | B. | $\frac{40}{\begin{array}{l}3\end{array}}$ | C. | 80 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤2$\sqrt{2}$ | B. | a≤2$\sqrt{6}$ | C. | a≤5 | D. | a≤$\frac{9}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com