已知全集U=R,A={x|
12
2x<4}
,B={x|log3x≤2}.
(Ⅰ)求A∩B;         
(Ⅱ)求?U(A∪B).
分析:(1)求解指數(shù)不等式和對數(shù)不等式化簡集合A,B,然后直接利用交集概念求解;
(2)直接利用補集運算求解.
解答:解:(Ⅰ)A={x|
1
2
2x<4}
={x|-1<x<2},
B={x|log3x≤2}={x|0<x≤9,
所以A∩B={x|0<x<2};
(Ⅱ)A∪B={x|-1<x≤9},
CU(A∪B)={x|x≤-1或x>9.
點評:本題考查了角、并、補集的混合運算,考查了指數(shù)不等式和對數(shù)不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-2≤x≤4},集合B={x|x≤1或x>5}
求(1)A∩B
  (2)?U(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-3<x≤6,x∈R},B={x|x2-5x-6<0,x∈R}.
求:
(1)A∪B;
(2)(?UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知全集U=R,A={x|x2-2x<0},B={x|log2x+1≥0},則A∩(?UB)=
(0,
1
2
(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|x≤1或x≥2},B={x|a<x<a+2}.
(1)若a=1,求(?UA)∩B;       
(2)若(?UA)∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案