精英家教網(wǎng)如圖,四邊形OABC是邊長為1的正方形,
OD
=3
OA
,點P為△BCD(含邊界)內(nèi)的一個動點,設
OP
=x
OC
+y
OD
,則x2+9y2的最小值等于
 
分析:以OD為x軸,OC為y軸,建立直角坐標系,根據(jù)點P為△BCD(含邊界)內(nèi)的一個動點建立不等關系,最后將3y看整體,則x2+9y2表示區(qū)域里點到原點距離的平方的幾何意義進行求解即可.
解答:解:以OD為x軸,OC為y軸,建立直角坐標系
則C(0,1),D(3,0),B(1,1)
直線CD的方程為x+3y-3=0,直線BD的方程為x+2y-3=0
OP
=x
OC
+y
OD
=(m,n)=(3y,x)
∵點P為△BCD(含邊界)內(nèi)的一個動點
3y+3x-3≥0
3y+2x-3≤0
x≤1

將3y看整體,則x2+9y2表示區(qū)域里點到原點距離的平方
當原點到直線3x+y-3=0的距離時x2+9y2取最小值
即d=
3
10

∴x2+9y2的最小值等于
9
10

故答案為:
9
10
點評:本題主要考查了向量在幾何中的應用,以及利用解析法求解和線性規(guī)劃的方法求最值,有一定的難度,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)
如圖,四邊形OABC為矩形,點A、C的坐標分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標為(a,0),橢圓C分別以OD、OC為長、短半軸,CD是橢圓在矩形內(nèi)部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當m=2時,求橢圓C的標準方程;
(Ⅱ)圓M在矩形內(nèi)部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形OABC是邊長為1的正方形,OD=3,點P為△BCD內(nèi)(含邊界)的動點,設
OP
OC
OD
(α,β∈R),則α+β的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形OABC是面積為4的正方形,函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設線段MC′、NA′分別與函數(shù)y=
k
x
(x>0)的圖象交于點E、F,求線段EF所在直線的解析式.
(3)計算△EOF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•文昌模擬)如圖,四邊形OABC是邊長為1的正方形,OD=3,點P為△BCD內(nèi)(含邊界)的動點,設
OP
OC
OD
(α,β∈R),則α+β的最大值等于 ( 。

查看答案和解析>>

同步練習冊答案