設(shè)函數(shù)f(x)=(x-1)ex-Kx2(其中k∈R).
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)當(dāng)k∈[0,+∞)時(shí),證明函數(shù)f(x)在R上有且只有一個(gè)零點(diǎn).
分析:(1)將k=1代入得到f(x)的解析式,令導(dǎo)函數(shù)f′(x)>0,f′(x)<0,求解即可得到f(x)的單調(diào)區(qū)間,根據(jù)極值的定義,即可得到函數(shù)的極值;
(2)根據(jù)x<1時(shí),f(x)在(-∞,1)上無零點(diǎn),轉(zhuǎn)化成證明f(x)在[1,+∞)有且只有一個(gè)零點(diǎn),對k分類討論,分別研究函數(shù)的單調(diào)性與極值的取值,判斷即可證明結(jié)論.
解答:解:(1)當(dāng)k=1時(shí),f(x)=(x-1)ex-x2,
∴f′(x)=ex+(x-1)ex-2x=xex-2x=x(ex-2),
令f′(x)=0,得x1=0,x2=ln2,
當(dāng)x<0時(shí),f′(x)>0,則f(x)在(-∞,0)上單調(diào)遞增,
當(dāng)0<x<ln2時(shí),f′(x)<0,則f(x)在(-∞,0)上單調(diào)遞減,
當(dāng)x>ln2時(shí),f′(x)>0,則f(x)在(-∞,0)上單調(diào)遞增,
∴當(dāng)f(x)的單調(diào)遞減區(qū)間為(0,ln2),單調(diào)遞增區(qū)間為(-∞,0)和(ln2,+∞),
極大值為f(0)=-1,極小值為f(ln2)=-(ln2)2+2ln2-2;
(2)證明:∵f(x)=(x-1)ex-Kx2(其中k∈R).
∴f′(x)=ex+(x-1)ex-2kx=xex-2kx=x(ex-2k),
當(dāng)x<1時(shí),f(x)<0,則f(x)在(-∞,1)上無零點(diǎn),
∴只需證明函數(shù)f(x)在[1,+∞)上有且只有一個(gè)零點(diǎn),
①若k∈[0,
e
2
],
當(dāng)x≥1時(shí),f′(x)≥0,則f(x)在[1,+∞)上單調(diào)遞增,
∵f(1)=-k≤0,f(2)=e2-4k≥e2-2e>0,
∴f(x)在[1,+∞)有且只有一個(gè)零點(diǎn);
②若k∈(
e
2
,+∞),則f(x)在[1,ln2k)上單調(diào)遞減,(ln2k,+∞)上單調(diào)遞增,
∵f(1)=-k<0,f(k+1)=kek+1-k(k+1)2=k[ek+1-(k+1)2],
令g(t)=et-t2,t=k+1>2,則g′(t)=et-2t,g″(t)=et-2,
∵t>2,則g″(t)>0,g′(t)在[2,+∞)上單調(diào)遞增,
∴g′(t)≥g′(2)=e2-4>0,
∴g(t)在[2,+∞)上單調(diào)遞增,g(t)≥g(2)=e2-4>0,
∴f(k+1)>0,
∴f(x)在[1,+∞)上有且只有一個(gè)零點(diǎn),
綜上所述,f(x)在R上有且只有一個(gè)零點(diǎn).
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,研究函數(shù)的零點(diǎn)問題.對于利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意導(dǎo)數(shù)的正負(fù)對應(yīng)著函數(shù)的單調(diào)性.利用導(dǎo)數(shù)研究函數(shù)問題時(shí),經(jīng)常會(huì)運(yùn)用分類討論的數(shù)學(xué)思想方法.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊答案