如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1所成的角是________.

 

 

60°

【解析】連接AB1,易知AB1∥EF,

連接B1C交BC1于點(diǎn)G,取AC的中點(diǎn)H,連接GH,則GH∥AB1∥EF.故∠HGB(或其補(bǔ)角)即為EF和BG所成角.設(shè)AB=BC=AA1=a,連接HB,在△GHB中,易知GH=HB=BG=a,

故兩直線所成的角即為∠HGB=60°.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

已知點(diǎn)A(3,0),B(0,4),直線AB上一動(dòng)點(diǎn)P(x,y),則xy的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:填空題

設(shè)α、β、γ為彼此不重合的三個(gè)平面,l為直線,給出下列命題:

①若α∥β,α⊥γ,則β⊥γ;

②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;

③若直線l與平面α內(nèi)的無(wú)數(shù)條直線垂直,則直線l與平面α垂直;

④若α內(nèi)存在不共線的三點(diǎn)到β的距離相等,則平面α平行于平面β;

上面命題中,真命題的序號(hào)為_(kāi)_______(寫(xiě)出所有真命題的序號(hào)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題

如圖中四個(gè)正方體圖形,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的序號(hào)是(  )

A.①③ B.①④ C.②③ D.②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:選擇題

如圖是正方體的展開(kāi)圖,則在這個(gè)正方體中:

①BM與ED平行;

②CN與BE是異面直線;

③CN與BM成60°角;

④DM與BN垂直.

以上四個(gè)命題中,正確命題的序號(hào)是(  )

A.①②③ B.②④ C.③④ D.②③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:選擇題

設(shè)A,B,C,D是空間四個(gè)不同的點(diǎn),在下列命題中,不正確的是(  )

A.若AC與BD共面,則AD與BC共面

B.若AC與BD是異面直線,則AD與BC是異面直線

C.若AB=AC,DB=DC,則AD=BC

D.若AB=AC,DB=DC,則AD⊥BC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:解答題

一個(gè)多面體的直觀圖及三視圖如圖所示:(其中M、N分別是AF、BC的中點(diǎn))

(1)求證:MN∥平面CDEF;

(2)求多面體A-CDEF的體積.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:填空題

若f(n)=12+22+32+…+(2n)2,則f(k+1)與f(k)的遞推關(guān)系式是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-4基本不等式(解析版) 題型:填空題

若a,b,c>0,且a2+ab+ac+bc=4,則2a+b+c的最小值為_(kāi)_______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案