已知橢圓C:數(shù)學(xué)公式(a>b>0)的離心率為數(shù)學(xué)公式,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)x-y+數(shù)學(xué)公式=0相切.
(1)求橢圓C的方程;
(2)設(shè)P(4,0),Q是橢圓C上的點(diǎn),連接PQ交橢圓C于另一點(diǎn)E,求直線(xiàn)PQ的斜率的取值范圍.

解:(1)由題意可得e==即c2=a2
∵以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓的方程為與直線(xiàn)x-y+=0相切.
∴圓心到直線(xiàn)x-y+=0的距離d==1=b
∵a2=b2+c2=1+
∴a=2,b=1
∴橢圓C的方程為
(2)由題意可得,所求的直線(xiàn)的斜率k一定存在,故可設(shè)直線(xiàn)方程為y=k(x-4)
聯(lián)立方程可得(1+4k2)x2-32k2x+64k2-4=0
∴△=322k4-4(1+4k2)(64k2-4)>0

分析:(1)由題意可得e==可得a,c的關(guān)系,然后由圓心到直線(xiàn)x-y+=0的距離d==1=b可求b,結(jié)合a2=b2+c2進(jìn)而可求橢圓方程
(2)由題意可設(shè)直線(xiàn)方程為y=k(x-4),由方程可得(1+4k2)x2-32k2x+64k2-4=0,則△=322k4-4(1+4k2)(64k2-4)>0,解不等式可求
點(diǎn)評(píng):本題主要考查了利用橢圓的性質(zhì)求解橢圓的方程,直線(xiàn)與橢圓的相交關(guān)系的應(yīng)用,處理此類(lèi)問(wèn)題常用的方法是聯(lián)立方程,結(jié)合方程的思想進(jìn)行求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級(jí)達(dá)標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線(xiàn)l過(guò)橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.
(。┤魸M(mǎn)足(O為坐標(biāo)原點(diǎn)),求△AOB的面積;
(ⅱ)當(dāng)直線(xiàn)l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線(xiàn)PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過(guò)點(diǎn)

(I)求橢圓C的離心率:

(II)設(shè)過(guò)點(diǎn)A(0,2)的直線(xiàn)l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線(xiàn)段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅武威六中高二12月學(xué)段檢測(cè)文科數(shù)學(xué)試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.

 ①求橢圓C的方程.

 ②當(dāng)⊿AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線(xiàn)y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線(xiàn)L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線(xiàn)段AB的垂直平分線(xiàn)過(guò)定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為kk>0)的直線(xiàn)與橢圓C相交于A(yíng)、B兩點(diǎn),若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案