()選修4-1:幾何證明選講

  如圖,已知的兩條角平分線相交于H,,F(xiàn)在上,

。

(I)                    證明:B,D,H,E四點共圓:

(II)                  證明:平分。


解析:

    (Ⅰ)在△ABC中,因為∠B=60°,

所以∠BAC+∠BCA=120°.

因為AD,CE是角平分線,

所以∠HAC+∠HCA=60°,

故∠AHC=120°.

于是∠EHD=∠AHC=120°.

因為∠EBD+∠EHD=180°,

所以B,D,H,E四點共圓.

(Ⅱ)連結(jié)BH,則BH為∠ABC的平分線,得∠HBD=30°

由(Ⅰ)知B,D,H,E四點共圓,

所以∠CED=∠HBD=30°.

又∠AHE=∠EBD=60°,由已知可得EF⊥AD,

可得∠CEF=30°.

所以CE平分∠DEF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計20分,
解答時應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個特征向量為α1=
1
-1
,屬于特征值λ2=4的一個特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2
.點
P為曲線C上的動點,求點P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
如圖,已知PA與圓O相切于點A,直徑BC⊥OP,連接AB交PO于點D
(Ⅰ)求證:PA=PD;
(Ⅱ)求證:AC•AP=AD•OC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)選修4-1:幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]
A.(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的長.
B.(選修4-2:矩陣與變換)
二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
C.(選修4-4:坐標系與參數(shù)方程)
在極坐標系中,設(shè)圓ρ=3上的點到直線ρ(cosθ+
3
sinθ)=2
的距離為d,求d的最大值.
D.(選修4-5:不等式選講)
設(shè)a,b,c為正數(shù)且a+b+c=1,求證:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)選修4-1:幾何證明選講
如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直
徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6
2
,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案