【題目】已知點(diǎn)F1、F2為雙曲線(b>0)的左、右焦點(diǎn),過(guò)F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,且∠MF1F2=30°,圓O的方程是x2+y2=b2.
(1)求雙曲線C的方程;
(2)過(guò)雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求的值;
(3)過(guò)圓O上任意一點(diǎn)Q作圓O的切線l交雙曲線C于A、B兩點(diǎn),AB中點(diǎn)為M,求證:|AB|=2|OM|.
【答案】(1);(2)-;(3)見(jiàn)解析
【解析】
(1)解:設(shè)F2,M的坐標(biāo)分別為,再通過(guò)雙曲線的定義和解三角形得到雙曲線C的方程為;(2)設(shè)雙曲線C上的點(diǎn)P(x0,y0),設(shè)兩漸近線的夾角為θ,再求出和的值,即得的值;(3)由題意,即證:OA⊥OB,分y0≠0和y0=0兩種情況證明,原題即得證.
(1)解:設(shè)F2,M的坐標(biāo)分別為
因?yàn)辄c(diǎn)M在雙曲線C上,所以,即,所以
在Rt△MF2F1中,,,所以
由雙曲線的定義可知:
故雙曲線C的方程為:
(2)解:由條件可知:兩條漸近線分別為
設(shè)雙曲線C上的點(diǎn)P(x0,y0),設(shè)兩漸近線的夾角為θ,則
則點(diǎn)P到兩條漸近線的距離分別為
因?yàn)?/span>P(x0,y0)在雙曲線C:上,所以,又,
所以=cos(π-θ)=-=-
(3)證明:由題意,即證:OA⊥OB.
設(shè)A(x1,y1),B(x2,y2),切線l的方程為:x0x+y0y=2
①當(dāng)y0≠0時(shí),切線l的方程代入雙曲線C中,化簡(jiǎn)得:
所以:,
又
所以
②當(dāng)y0=0時(shí),易知上述結(jié)論也成立.所以
綜上,OA⊥OB,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,,,,且的最小值為,的圖象的相鄰兩條對(duì)稱軸之間的距離為,的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;
(2)在中,角所對(duì)的邊分別為,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點(diǎn).
(1)證明:平面平面;
(2)如何在上找一點(diǎn),使平面并說(shuō)明理由;
(3)若,對(duì)于(2)中的點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知底面ABCD是矩形,PA⊥平面ABCD,AP=2,AB=2,AD=4,且E、F分別是PB、PC的中點(diǎn)。
(1)求三棱錐的體積;
(2)求直線EC與平面PCD所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了應(yīng)對(duì)金融危機(jī),決定適當(dāng)進(jìn)行裁員,已知這家公司現(xiàn)有職工人(,且為10的整數(shù)倍),每人每年可創(chuàng)利100千元,據(jù)測(cè)算,在經(jīng)營(yíng)條件不變的前的提下,若裁員人數(shù)不超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元);若裁員人數(shù)超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元),為保證公司的正常運(yùn)轉(zhuǎn),留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費(fèi).
(1)設(shè)公司裁員人數(shù)為,寫出公司獲得的經(jīng)濟(jì)效益(千元)關(guān)于的函數(shù)(經(jīng)濟(jì)效益=在職人員創(chuàng)利總額—被裁員工生活費(fèi));
(2)為了獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上海途安型號(hào)出租車價(jià)格規(guī)定:起步費(fèi)元,可行千米;千米以后按每千米按元計(jì)價(jià),可再行千米;以后每千米都按元計(jì)價(jià)。假如忽略因交通擁擠而等待的時(shí)間.
請(qǐng)建立車費(fèi)(元)和行車?yán)锍?/span>(千米)之間的函數(shù)關(guān)系式;
注意到上海出租車的計(jì)價(jià)系統(tǒng)是以元為單位計(jì)價(jià)的,如:小明乘坐途安型號(hào)出租車從華師大二附中本部到浦東實(shí)驗(yàn)學(xué)校走路線一(路線一總長(zhǎng)千米)須付車費(fèi)元,走路線二(路線二總長(zhǎng)千米)也須付車費(fèi)元.將上述函數(shù)解析式進(jìn)行修正(符號(hào)表示不大于的最大整數(shù),符號(hào)表示不小于的最小整數(shù));并求小明乘坐途安型號(hào)出租車從華師大二附中本部到閔行分校須付車費(fèi)多少元?(注:兩校區(qū)路線長(zhǎng)千米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn).新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于毫克/百毫升,小于毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于毫克/百毫升為醉酒駕車.經(jīng)過(guò)反復(fù)試驗(yàn),喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下圖,該函數(shù)近似模型如下:.
又已知?jiǎng)偤眠^(guò)1小時(shí)時(shí)測(cè)得酒精含量值為毫克/百毫升.根據(jù)上述條件,解答以下問(wèn)題:
(1)試計(jì)算喝1瓶啤酒多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整分鐘計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定數(shù)列,記該數(shù)列前項(xiàng)中的最大項(xiàng)為,即,該數(shù)列后項(xiàng)中的最小項(xiàng)為,記,;
(1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,,;
(2)若是數(shù)列的前項(xiàng)和,且對(duì)任意,有,其中為實(shí)數(shù),且,.
(。┰O(shè),證明:數(shù)列是等比數(shù)列;
(ⅱ)若數(shù)列對(duì)應(yīng)的滿足對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為提高生產(chǎn)質(zhì)量,引入了一批新的生產(chǎn)設(shè)備,為了解生產(chǎn)情況,隨機(jī)抽取了新、舊設(shè)備生產(chǎn)的共200件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),統(tǒng)計(jì)得到產(chǎn)品的質(zhì)量指標(biāo)值如下表及圖(所有產(chǎn)品質(zhì)量指標(biāo)值均位于區(qū)間內(nèi)),若質(zhì)量指標(biāo)值大于30,則說(shuō)明該產(chǎn)品質(zhì)量高,否則說(shuō)明該產(chǎn)品質(zhì)量一般.
質(zhì)量指標(biāo) | 頻數(shù) |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合計(jì) | 80 |
(1)根據(jù)上述圖表完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為產(chǎn)品質(zhì)量高與引人新設(shè)備有關(guān);
新舊設(shè)備產(chǎn)品質(zhì)量列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
新設(shè)備產(chǎn)品 | |||
舊設(shè)備產(chǎn)品 | |||
合計(jì) |
(2)從舊設(shè)備生產(chǎn)的質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品中,按分層抽樣抽取6件產(chǎn)品,再?gòu)倪@6件產(chǎn)品中隨機(jī)選取2件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),求至少有一件產(chǎn)品質(zhì)量指標(biāo)值位于的概率.
附:,.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com