【題目】的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,M-N=992.

(1)判斷該展開式中有無x2項?若有,求出它的系數(shù);若沒有,說明理由;

(2)求此展開式中有理項的項數(shù).

【答案】(1)-250; (2)只有一項有理項.

【解析】

由已知求出M,N,從而求出n的值,運用通項公式來計算有沒有x2項存在.

可得,只有一項符合題意,即可得證

令x=1得M=4n,而N=2n,由M-N=992,得4n-2n=992.即(2n-32)·(2n+31)=0,

故2n=32,n=5.

(1)

由題意,令=2,解得k=3,故含x2項存在.

它的系數(shù)為(-1)3··55-3=-250.

(2)展開式中的有理項應滿足,故k只能取3,即展開式中只有一項有理項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有下列說法:
①一支田徑隊有男女運動員98人,其中男運動員有56人.按男、女比例用分層抽樣的方法,從全體運動員中抽出一個容量為28的樣本,那么應抽取女運動員人數(shù)是12人;
②采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為5,27,38,49的同學均選中,則該班學生的人數(shù)為60人;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為 ,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗某種血清預防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防作用”,利用2×2列聯(lián)表計算得K2的觀測值k≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯誤的概率不超過0.05的前提下認為“這種血清能起到預防的作用”.
正確的有(
A.①④
B.②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p3+q3=2,求證:p+q≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓M的對稱軸為坐標軸,離心率為,且一個焦點坐標為(,0).

(1)求橢圓M的方程;

(2)設直線l與橢圓M相交于A,B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中點P在橢圓M,O為坐標原點,求點O到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex[ x3﹣2x2+(a+4)x﹣2a﹣4],其中a∈R,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的圖象在x=0處的切線與直線x+y=0垂直,求a的值;
(2)關于x的不等式f(x)<﹣ ex在(﹣∞,2)上恒成立,求a的取值范圍;
(3)討論函數(shù)f(x)極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓為焦點,且離心率

(1)求橢圓的方程;

(2)過點斜率為的直線與橢圓有兩個不同交點,求的范圍;

(3)設橢圓軸正半軸、軸正半軸的交點分別為、,是否存在直線,滿足(2)中的條件且使得向量垂直?如果存在,寫出的方程;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別為, , ,若,

(1)求∠B的大。

(2), ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}滿足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求證:
(1)數(shù)列{an+2n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,圓O的兩弦AB和CD交于點E,作EF∥CB,并且交AD的延長線于點F,F(xiàn)G切圓O于點G.

(1)求證:△DEF∽△EFA;
(2)如果FG=1,求EF的長.

查看答案和解析>>

同步練習冊答案