【題目】已知函數(shù),.其中,
(1)若.求證:.
(2)若不等式對恒成立,試求的取值范圍
【答案】(1)證明見解析;(2)
【解析】
(1)求導(dǎo)得到,存在,使,,故,代入,計算得到證明.
(2)將代入不等式,得到,根據(jù)函數(shù)的單調(diào)性得到;再設(shè),求導(dǎo)得到單調(diào)性,計算得到答案.
(1)由,得,,所以有,
所以在上單調(diào)遞增,且,,
所以存在,使,
所以當(dāng)時,,當(dāng)時,,
所以,(*)
且,即,兩邊取對數(shù),得,
代入(*),有,得證.
(2)由題意得對成立,
(。┍匾裕瑢代入上述不等式,得,
即,
令,
易知在上單調(diào)遞增,且,所以.
(ⅱ)下證當(dāng)時,對成立.
即證,
因為,所以,
設(shè),則,
顯然在上單調(diào)遞減,且,
所以在上單調(diào)遞增,在上單調(diào)遞減,
故,不等式得證.
由(。┖停áⅲ┛芍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,,,AF⊥平面ABC,且.E為線段DC上一點,沿直線AE將△ADE翻折成,M為的中點,則三棱錐體積的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識,某高中學(xué)校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結(jié)果如圖:
(1)若此次知識競答得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求,的值(,的值四舍五入取整數(shù)),并計算;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運(yùn)者制定如下獎勵方案:得分低于的獲得1次抽獎機(jī)會,得分不低于的獲得2次抽獎機(jī)會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學(xué)是這次活動中的幸運(yùn)者,記為該同學(xué)在抽獎中獲得紅包的總金額,求的分布列和數(shù)學(xué)期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓相交于,兩點.
(1)當(dāng)直線的斜率時,求的面積;
(2)當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市50%的企業(yè)進(jìn)行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) | 20 | 40 | 80 |
(1)環(huán)保部門對企業(yè)抽查評估完成后,隨機(jī)抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 | 0.04 | 0.10 | 0.20 | 0.12 |
其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機(jī)抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;
(2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進(jìn)行技術(shù)改造,由于技術(shù)水平問題,被評定為“合格”“良好”和“優(yōu)秀”的概率分別為,和,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當(dāng)年因改造而增加的利潤為萬元,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,是圓上一動點,求點到直線的距離的最小值和最大值;
(2)直線與關(guān)于原點對稱,且直線截曲線的弦長等于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的每條棱的長度都相等,,分別是棱,的中點,是棱上一點,且平面.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市在開展創(chuàng)建“全國文明城市”活動中,工作有序扎實,成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評.“創(chuàng)文”過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求出a的值;
(2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)第2組抽到人,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)在假期進(jìn)行社會實踐活動,對歲的人群隨機(jī)抽取n人進(jìn)行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求,,的值;
(Ⅱ)從年齡在歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com