18.(1)計算:27${\;}^{\frac{2}{3}}$-$\sqrt{(3-π)^{2}}$+lg$\frac{1}{5}$-lg20
(2)已知角α的頂點在坐標原點,始邊與x軸非負半軸重合,點P(-3,m)(m>0)是角α終邊上一點,且cosα=-$\frac{3}{5}$,求tanα的值.

分析 (1)利用根式的性質(zhì),即可得出結(jié)論;
(2)利用cosα=-$\frac{3}{5}$,求出m,即可求tanα的值.

解答 解:(1)27${\;}^{\frac{2}{3}}$-$\sqrt{(3-π)^{2}}$+lg$\frac{1}{5}$-lg20=9-π+3-2=10-π;
(2)由題意,$\frac{-3}{\sqrt{9+{m}^{2}}}$=-$\frac{3}{5}$,
∵m>0,∴m=4,
∴tanα=-$\frac{4}{3}$.

點評 本題考查根式的性質(zhì),考查任意角三角函數(shù)的定義,考查學(xué)生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,$A={60°},b=2,{S_{△ABC}}=\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.解不等式x2-5x+6>0的解集為{x|x<2或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x、y都是正實數(shù),那么“x≥2或y≥2”是“x2+y2≥8”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列關(guān)于向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$的命題中,正確的有(4).
(1)$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow c$;
(2)$({\overrightarrow a•\overrightarrow b})•\overrightarrow c=\overrightarrow a•({\overrightarrow b•\overrightarrow c})$;
(3)$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}|×|{\overrightarrow b}|$
(4)$|{\overrightarrow a+\overrightarrow b}|^2={({\overrightarrow a+\overrightarrow b})^2}$;
(5)若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a,\overrightarrow b$中至少一個為$\overrightarrow 0$
(6)若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$;
(7)若$\overrightarrow a⊥\overrightarrow b,\overrightarrow b⊥\overrightarrow c$,則$\overrightarrow a⊥\overrightarrow c$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=x2-2ax+1在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知α=-1920°
(1)將α寫成β+2kπ(k∈Z,0≤β<2π)的形式,并指出它是第幾象限角
(2)求與α終邊相同的角θ,滿足-4π≤θ<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點為F1,F(xiàn)2,上頂點為A,點B和點F2關(guān)于F1對稱,且AB⊥AF2,A,B,F(xiàn)2三點確定的圓M恰好與直線$x-\sqrt{3}y-3=0$相切.
(1)求橢圓的方程C;
(2)過F1作一條與兩坐標軸都不垂直的直線l交橢圓于P,Q零點,在x軸上是否存在點N,使得NF1恰為△PNQ的內(nèi)角平分線,若存在,求出點N的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x.y滿足約束條件$\left\{\begin{array}{l}{y≥3x-3}\\{2y≤x+4}\\{3x+4y+12≥0}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-1B.6C.3D.-8

查看答案和解析>>

同步練習冊答案