A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{1}{3}$ |
分析 sinA+sinB=$\sqrt{2}$sinC,由正弦定理可得:a+b=$\sqrt{2}$c.由S△ABC=$\frac{3}{16}$sinC,利用三角形面積計算公式可得:$\frac{1}{2}$absinC=$\frac{3}{16}$sinC,即ab=$\frac{3}{8}$.再利用余弦定理即可得出.
解答 解:在△ABC中,∵sinA+sinB=$\sqrt{2}$sinC,由正弦定理可得:a+b=$\sqrt{2}$c.∵c=1,∴a+b=$\sqrt{2}$.
∵S△ABC=$\frac{3}{16}$sinC,∴$\frac{1}{2}$absinC=$\frac{3}{16}$sinC,化為:ab=$\frac{3}{8}$.
則cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{(a+b)^{2}-2ab-1}{2ab}$=$\frac{2-2×\frac{3}{8}-1}{2×\frac{3}{8}}$=$\frac{1}{3}$.
故選:D.
點評 本題考查了正弦定理余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $20\sqrt{2}$ | B. | $25\sqrt{2}π$ | C. | 50π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|$\frac{π}{2}$<x<π} | B. | {x|$\frac{π}{2}$<x<$\frac{3}{2}$π} | C. | {x|$\frac{π}{2}$<x<2π} | D. | {x|0<x<$\frac{π}{2}$} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com