已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為、,短軸長(zhǎng)為,點(diǎn)在橢圓上,且滿(mǎn)足的周長(zhǎng)為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于A、B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
(Ⅰ)
(Ⅱ)存在這樣的定點(diǎn),使得。
解析試題分析:(Ⅰ) 所以橢圓的方程為
4分
(Ⅱ)假設(shè)存在這樣的定點(diǎn),設(shè),直線(xiàn)方程為
則
=
聯(lián)立 消去得
令 即 ,
當(dāng)軸時(shí),令,仍有
所以存在這樣的定點(diǎn),使得 13分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線(xiàn)與橢圓的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線(xiàn)關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。對(duì)于存在性問(wèn)題,往往假定存在,條件存在的條件是否具備,而明確存在與否。本題應(yīng)用韋達(dá)定理,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算,簡(jiǎn)化了解題過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)動(dòng)點(diǎn)到點(diǎn)的距離等于它到直線(xiàn)的距離,記點(diǎn)的軌跡為曲.
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)若點(diǎn),,是上的不同三點(diǎn),且滿(mǎn)足.證明: 不可能為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)直線(xiàn)y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線(xiàn)y=x2的兩切線(xiàn)AP,AQ,P,Q為切點(diǎn).
(1)若切線(xiàn)AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線(xiàn)PQ過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,己知直線(xiàn)l與拋物線(xiàn)相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).
(1)若動(dòng)點(diǎn)M滿(mǎn)足,求點(diǎn)M軌跡C的方程:
(2)若過(guò)點(diǎn)B的直線(xiàn)(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線(xiàn)段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)B1作直線(xiàn)l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:()經(jīng)過(guò)與兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿(mǎn)足.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是離心率為的橢圓:上的一點(diǎn),斜率為的直線(xiàn)交橢圓于、兩點(diǎn),且、、三點(diǎn)不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知F1、F2分別為橢圓C1:的上、下焦點(diǎn),其中F1也是拋物線(xiàn)C2:的焦點(diǎn),點(diǎn)A是曲線(xiàn)C1,C2在第二象限的交點(diǎn),且
(Ⅰ)求橢圓1的方程;
(Ⅱ)已知P是橢圓C1上的動(dòng)點(diǎn),MN是圓C:的直徑,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn)。
(1)試問(wèn)在軸上是否存在不同于點(diǎn)的一點(diǎn),使得與軸所在的直線(xiàn)所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由。
(2)若的面積為,求向量的夾角;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com