【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:;
(3)若,這兩個函數(shù)的所有極值之和不小于,求的取值范圍.
【答案】(1),;(2)證明見解析;(3).
【解析】試題分析:(1)通過對,求導(dǎo)可知,進(jìn)而再求導(dǎo)可知,通過令進(jìn)而可知,的極小值點為,從而,整理可知,結(jié)合 有極值可知有兩個不等的實根,進(jìn)而可知;(2)通過(1)
構(gòu)造函數(shù),結(jié)合,可知,從而可得結(jié)論;(3)通過(1)可知的極小值,利用韋達(dá)定理及完全平方關(guān)系可知的兩個極值之和為,進(jìn)而問題轉(zhuǎn)化為解不等式,因式分解即得結(jié)論.
試題解析:(1)由,得,當(dāng)時,有極小值,的極值點是的零點,,又,故,有極值,故有實根,從而,即,當(dāng)時,,故在R上是增函數(shù),沒有極值;
當(dāng)時,有兩個相異的實根,.
列表如下:
x | |||||
+ | 0 | – | 0 | + | |
極大值 | 極小值 |
故的極值點是.從而.因此,定義域為.
(2)由(1)知,.設(shè),則.
當(dāng)時,,從而在上單調(diào)遞增.
因為,所以,故,即.因此.
(3)由(1)知,的極值點是,且,從而
,
記,所有極值之和為,
因為的極值為,所以,.
因為,于是在上單調(diào)遞減.
因為,于是,故.因此a的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年12月,針對國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅戰(zhàn).某研究人員為了了解天然氣的需求狀況,對該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計,并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測2018年該地區(qū)的天然氣需求量;
(Ⅱ)政府部門為節(jié)約能源出臺了《購置新能源汽車補(bǔ)貼方案》,該方案對新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車補(bǔ)貼1萬元,B類:每車補(bǔ)貼2.5萬元,C類:每車補(bǔ)貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補(bǔ)貼情況進(jìn)行了統(tǒng)計,結(jié)果如下表:
為了制定更合理的補(bǔ)貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補(bǔ)貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進(jìn)一步跟蹤調(diào)查,求恰好有1輛車享受3.4萬元補(bǔ)貼的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是常數(shù).
(Ⅰ)求曲線在點處的切線方程,并證明對任意,切線經(jīng)過定點;
(Ⅱ)證明:時,有兩個零點、,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中,且為常數(shù)).
(1)若對于任意的,都有成立,求的取值范圍;
(2)在(1)的條件下,若方程在上有且只有一個實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于的不等式的解集為,,設(shè).
()求的值.
()如何取值時,函數(shù)存在極值點,并求出極值點.
()若,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購。為拓展市場,某調(diào)研組對甲、乙兩個品牌的共享單車在5個城市的用戶人數(shù)進(jìn)行統(tǒng)計,得到如下數(shù)據(jù):
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百萬) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百萬) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享單車用戶人數(shù)超過5百萬的城市稱為“優(yōu)質(zhì)潛力城市”,否則“非優(yōu)”,請據(jù)此判斷是否有85%的把握認(rèn)為“優(yōu)質(zhì)潛力城市”與共享單車品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,為拓展市場,甲品牌要從這5個城市中選出3個城市進(jìn)行大規(guī)模宣傳.
①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;
②以表示選中的城市中用戶人數(shù)超過5百萬的個數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: K2=,n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com