已知數(shù)列{an}滿足a1<2,an+1-1=an(an-1)(n∈N *)且
1
a1
+
1
a2
+…+
1
a2014
=1,則a2015-4a1的最小值為
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由題意可知:a1<2,an≠1,an≠0.由an+1-1=an(an-1)可得
1
an
=
1
an-1
-
1
an+1-1
.利用“裂項(xiàng)求和”可得a2015=
1
2-a1
,a2015-4a1=
1
2-a1
+4(2-a1)-8,再利用基本不等式即可得出.
解答: 解:由題意可知:a1<2,an≠1,an≠0.
由an+1-1=an(an-1)可得
1
an
=
1
an-1
-
1
an+1-1

∴1=
1
a1
+
1
a2
+…+
1
a2014
=(
1
a1-1
-
1
a2-1
)
+(
1
a2-1
-
1
a3-1
)
+…+(
1
a2014-1
-
1
a2015-1
)
=
1
a1-1
-
1
a2015-1

化為a2015=
1
2-a1
,
∴a2015-4a1=
1
2-a1
+4(2-a1)-8≥2
4(2-a1)•
1
2-a1
-8=-4,當(dāng)且僅當(dāng)a1=
3
2
時(shí)取等號.
故a2015-4a1的最小值為-4.
故答案為:-4.
點(diǎn)評:本題考查了“裂項(xiàng)求和”、數(shù)列變形、基本不等式的性質(zhì),考查了推理能力和計(jì)算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={y|y=x2+x+2,x∈[0,1]},B={x|y=lg(x-5)}.
(1)求A∩∁RB;
(2)C={x|-x2+ax-1≥0}.若A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某拍賣行組織拍賣的6幅名畫中,有2幅是贗品.某人在這次拍賣中隨機(jī)買入了兩幅畫,則此人買入的兩幅畫中恰有一幅畫是贗品的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(-2)+g(2)=3,f(2)+g(-2)=5,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于大于1的自然數(shù)m的三次冪可以用奇數(shù)進(jìn)行以下方式的“分裂”:23
3
5
33
7
9
11
,43
13
15
17
19
,…仿此,若m3的“分裂”中有一個(gè)數(shù)是135,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O(0,0)和A(6,3)兩點(diǎn),若點(diǎn)P在直線OA上,且
OP
=
1
2
PA
,又P是OB的中點(diǎn),則點(diǎn)B的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果質(zhì)點(diǎn)M按照規(guī)律s=3t2運(yùn)動,則在t=4時(shí)的瞬時(shí)速度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α+
π
6
)=
4
5
,則sin(2α-
π
6
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將菱形ABCD的每條邊1,2,3,…,n,…等分,并按圖1,圖2,圖3,;圖4,…的方式連結(jié)等分點(diǎn),將每個(gè)點(diǎn)依圖示規(guī)律填上1,2,3,4,5,6,…,例如圖3中菱形ABCD的四個(gè)頂點(diǎn)上所填數(shù)字之和為34.

(1)圖5中,菱形ABCD的四個(gè)頂點(diǎn)上所填數(shù)字之和是
 
;
(2)圖n中,菱形ABCD的四個(gè)頂點(diǎn)上所填數(shù)字之和是
 

查看答案和解析>>

同步練習(xí)冊答案