【題目】已知函數(shù).
(1)若函數(shù)y=f(x)為偶函數(shù),求k 的值;
(2)求函數(shù)y=f(x)在區(qū)間[0,4]上的最大值;
(3)若方程f(x)=0 有且僅有一個(gè)根,求實(shí)數(shù)k 的取值范圍.
【答案】(1);(2)當(dāng)時(shí),其最大值為;當(dāng)時(shí),其最大值為0.
(3).
【解析】
(1)根據(jù)偶函數(shù)的定義,即可求出k 的值;
(2)根據(jù)定義去掉絕對(duì)值,將函數(shù)寫成分段式,即可知函數(shù)的最大值等于,討論即得;
(3)顯然,可知是方程的一個(gè)根,因?yàn)榉匠?/span>f(x)=0 有且僅有一個(gè)根,故當(dāng)時(shí).方程無解,當(dāng)時(shí),無解,即可求出實(shí)數(shù)的取值范圍.
(1)因?yàn)楹瘮?shù)為偶函數(shù)且定義域?yàn)?/span>,所以,令,
即,解得,檢驗(yàn)符合題意.故.
(2)當(dāng)時(shí),,可知由兩段拋物線的一部分組成,因?yàn)檫@兩個(gè)拋物線的開口均向上,所以其最大值為,
,,,顯然,
當(dāng)時(shí),其最大值為;當(dāng)時(shí),其最大值為0.
(3)因?yàn)?/span>是方程的一個(gè)根,方程有且僅有一個(gè)根,所以當(dāng)時(shí),方程無解,且當(dāng)時(shí),無解,
故且,即,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線于兩點(diǎn),交圓于兩點(diǎn),在第一象限,在第四象限.
(1)求拋物線的方程;
(2)是否存在直線使是與的等差中項(xiàng)?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式
(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別為橢圓的左、右焦點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與直線:有公共點(diǎn)時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成,兩組.年年初,公司根據(jù)銷售員的銷售業(yè)績分發(fā)年終獎(jiǎng),銷售員的銷售額(單位:十萬元)在區(qū)間,,,內(nèi)對(duì)應(yīng)的年終獎(jiǎng)分別為2萬元,2.5萬元,3萬元,3.5萬元.已知銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組:,,,,得到如下兩個(gè)頻率分布直方圖:
以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機(jī)選取1位,記,分別表示組與組被選取的銷售員獲得的年終獎(jiǎng).
(1)求的分布列及數(shù)學(xué)期望;
(2)試問組與組哪個(gè)組銷售員獲得的年終獎(jiǎng)的平均值更高?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個(gè)學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個(gè)學(xué)校中,每校至多選出1名.
(1)請列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師被選中的概率;
(3)求宣講團(tuán)中沒有乙校教師代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為由右邊的程序運(yùn)行后,輸出.據(jù)此解答如下問題:
(Ⅰ)求莖葉圖中破損處分?jǐn)?shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計(jì)該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )
A. 16 B. 8 C. 4 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com