雙曲線
x2
9
-
y2
16
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上.若PF1⊥PF2,求點(diǎn)P到x軸的距離.
設(shè)P點(diǎn)為(x0,y0),而F1(-5,0),F(xiàn)2(5,0),…(2分)
PF1
=(-5-x0,-y0),
PF2
=(5-x0,-y0).
∵PF1⊥PF2
PF1
PF2
=0
,
即(-5-x0)(5-x0)+(-y0)•(-y0)=0,
整理,得
x20
+
y20
=25
①…(8分)
又∵P(x0,y0)在雙曲線上,
x20
9
-
y20
16
=1
②…(10分)
聯(lián)立①②,得
y20
=
256
25
,即|y0|=
16
5
…(12分)
因此點(diǎn)P到x軸的距離為
16
5
…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線2x2-y2-2=0的右焦點(diǎn)作直線l交曲線于A、B兩點(diǎn),若|AB|=2則這樣的直線存在( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的方程為
x2
16
-
y2
9
=1
,則其離心率為(  )
A.
4
5
B.
5
4
C.±
4
5
D.±
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
4
-
y2
25
=1的漸近線方程是( 。
A.y=±
25
4
x
B.y=±
4
25
x
C.y=±
5
2
x
D.y=±
2
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)m∈[-2,-1]時(shí),二次曲線
x2
4
+
y2
m
=1
的離心率e的取值范圍是(  )
A.[
2
2
,
3
2
]
B.[
3
2
5
2
]
C.[
5
2
,
6
2
]
D.[
3
2
,
6
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)P是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓C2:x2+y2=a2+b2的一個(gè)交點(diǎn),且2∠PF1F2=∠PF2F1,其中F1、F2分別為雙曲線C1的左右焦點(diǎn),則雙曲線C1的離心率為( 。
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
n
+
y2
12-n
=-1
(n>0)的離心率是
3
,則n=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線y2-3x2=9的漸近線方程是(  )
A.y=±3xB.y=±
1
3
x
C.y=±
3
x
D.y=±
3
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線C:
x2
a2
-y2=1(a>0)
與直線l:x+y=1交于兩個(gè)不同的點(diǎn)A,B,求雙曲線C的離心率e的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案