(1)用反證法證明:在一個(gè)三角形中,至少有一個(gè)內(nèi)角大于或等于;
(2)已知,試用分析法證明:.
(1)見解析;(2)見解析

試題分析:
(1)反證法證明問題的關(guān)鍵是:提出結(jié)論的反面,并以此為條件推導(dǎo)導(dǎo)出矛盾;(2)分析法要求由結(jié)論成立反推條件(由果索因).
試題解析:
(1)假設(shè)在一個(gè)三角形中,沒有一個(gè)內(nèi)角大于或等于,
即均小于                                   2分
則三內(nèi)角和小于,                          4分
這與三角形中三個(gè)內(nèi)角和等于矛盾,
故假設(shè)不成立,原命題成立;                     6分
(2)要證上式成立,需證
需證                      8分
需證
需證
需證                            10分
只需證
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060432294362.png" style="vertical-align:middle;" />顯然成立,所以原命題成立.                  12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

1)求證:當(dāng)時(shí),
2)證明: 不可能是同一個(gè)等差數(shù)列中的三項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一般地,給定平面上有n個(gè)點(diǎn),每?jī)牲c(diǎn)之間有一個(gè)距離,最大距離與最小距離的比記為λn,已知λ4的最小值是
2
,λ5的最小值是2sin
3
10
π
,λ6的最小值是
3
.試猜想λn(n≥4)的最小值是______.(這就是著名的Heilbron猜想,已經(jīng)被我國(guó)的數(shù)學(xué)家攻克)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某動(dòng)點(diǎn)在平面直角坐標(biāo)系第一象限的整點(diǎn)上運(yùn)動(dòng)(含第一象限x,y軸上的整點(diǎn)),其運(yùn)動(dòng)規(guī)律為(m,n)→(m+1,n+1)或(m,n)→(m+1,n-1).若該動(dòng)點(diǎn)從原點(diǎn)出發(fā),經(jīng)過6步運(yùn)動(dòng)到(6,2)點(diǎn),則有______種不同的運(yùn)動(dòng)軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一支人數(shù)是5的倍數(shù)且不少于1000人的游行隊(duì)伍,若按每橫排4人編隊(duì),最后差3人;若按每橫排3人編隊(duì),最后差2人;若按每橫排2人編隊(duì),最后差1人.則這只游行隊(duì)伍的最少人數(shù)是(  )
A.1025B.1035C.1045D.1055

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=
1-(x-1)2
,x∈[1,2]對(duì)于滿足1<x1<x2<2的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0
④(x1-x2)[f(x2)-f(x1)]>0
其中正確結(jié)論的個(gè)數(shù)有( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題“三角形的內(nèi)角中至多有一個(gè)鈍角”時(shí),假設(shè)正確的是( )
A.三個(gè)內(nèi)角中至少有一個(gè)鈍角
B.三個(gè)內(nèi)角中至少有兩個(gè)鈍角
C.三個(gè)內(nèi)角都不是鈍角
D.三個(gè)內(nèi)角都不是鈍角或至少有兩個(gè)鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若P=,Q= (a≥0),則P,Q的大小關(guān)系(  )
A.P>QB.P=Q
C.P<QD.由a取值決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,。求證中至少有一個(gè)不少于0。

查看答案和解析>>

同步練習(xí)冊(cè)答案