【題目】設(shè)函數(shù),

1)當(dāng)為自然對(duì)數(shù)的底數(shù)時(shí),求的極小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對(duì)任意,恒成立,求m的取值范圍.

【答案】12;(2當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);(3,

【解析】

1時(shí),,利用判定的增減性并求出的極小值;

2)由函數(shù),令,求出;設(shè),求出的值域,討論的取值,對(duì)應(yīng)的零點(diǎn)情況;

3)由,恒成立,等價(jià)于恒成立,即上單調(diào)遞減;,求出的取值范圍.

解:(1)當(dāng)時(shí),,

;

當(dāng)時(shí),,上是減函數(shù);

當(dāng)時(shí),,上是增函數(shù);

時(shí),取得極小值為;

2函數(shù),

,得;

設(shè),

當(dāng)時(shí),上是增函數(shù),

當(dāng)時(shí),,上是減函數(shù);

的極值點(diǎn),且是極大值點(diǎn),

的最大值點(diǎn),

的最大值為1;

,結(jié)合的圖象,如圖;

可知:當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);

當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn);

綜上,當(dāng)時(shí),函數(shù)無(wú)零點(diǎn);

當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

3)對(duì)任意,恒成立,

等價(jià)于恒成立;

設(shè),

上單調(diào)遞減;

上恒成立,

,

對(duì)于,僅在時(shí)成立;

的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)yfx)的導(dǎo)函數(shù),定義的導(dǎo)函數(shù),若方程0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,fx0))為函數(shù)yfx)的拐點(diǎn),經(jīng)研究發(fā)現(xiàn),所有的三次函數(shù)fx)=ax3+bx2+cx+da≠0)都有拐點(diǎn),且都有對(duì)稱中心,其拐點(diǎn)就是對(duì)稱中心,設(shè)fx)=x33x23x+6,則f+f+……+f)=_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yf(x)在R上的圖象是連續(xù)不斷的一條曲線,且圖象關(guān)于原點(diǎn)對(duì)稱,其導(dǎo)函數(shù)為f'(x),當(dāng)x0時(shí),x2f'(x)>﹣2xf(x)成立,若xR,e2xf(ex)﹣a2x2f(ax)>0恒成立,則a的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在創(chuàng)建國(guó)家級(jí)衛(wèi)生城(簡(jiǎn)稱創(chuàng)衛(wèi))的過(guò)程中,相關(guān)部門需了解市民對(duì)創(chuàng)衛(wèi)工作的滿意程度,若市民滿意指數(shù)不低于0.8(注:滿意指數(shù)),創(chuàng)衛(wèi)工作按原方案繼續(xù)實(shí)施,否則需進(jìn)一步整改.為此該部門隨機(jī)調(diào)查了100位市民,根據(jù)這100位市民給創(chuàng)衛(wèi)工作的滿意程度評(píng)分,按以下區(qū)間:,,,,分為六組,得到如圖頻率分布直方圖:

1)為了解部分市民給創(chuàng)衛(wèi)工作評(píng)分較低的原因,該部門從評(píng)分低于60分的市民中隨機(jī)選取2人進(jìn)行座談,求這2人所給的評(píng)分恰好都在的概率;

2)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該市創(chuàng)衛(wèi)工作是否需要進(jìn)一步整改,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡(jiǎn)稱蔬菜),購(gòu)入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的蔬菜沒(méi)有售完,則批發(fā)商將沒(méi)售完的蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把蔬菜低價(jià)處理完,且當(dāng)天不再購(gòu)進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計(jì)了100蔬菜在每天的前8小時(shí)內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購(gòu)入6蔬菜,有4蔬菜在前8小時(shí)內(nèi)分別被4名顧客購(gòu)買,剩下2袋在8小時(shí)后被另2名顧客購(gòu)買.現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購(gòu)買的概率是多少?

2)以上述樣本數(shù)據(jù)作為決策的依據(jù).

i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購(gòu)進(jìn)6蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購(gòu)進(jìn)蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的蔬菜的進(jìn)貨方案,使其所獲取的平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在,使得對(duì)任意恒成立,則函數(shù)上有下界,其中為函數(shù)的一個(gè)下界;若存在,使得對(duì)任意恒成立,則函數(shù)上有上界,其中為函數(shù)的一個(gè)上界.如果一個(gè)函數(shù)既有上界又有下界,那么稱該函數(shù)有界.下列四個(gè)結(jié)論:

1不是函數(shù)的一個(gè)下界;②函數(shù)有下界,無(wú)上界;

③函數(shù)有上界,無(wú)下界;④函數(shù)有界.

其中所有正確結(jié)論的編號(hào)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形SG1G2G3中,E、F分別是G1G2G2G3的中點(diǎn),DEF的中點(diǎn),現(xiàn)在沿SE、SFEF把這個(gè)正方形折成一個(gè)四面體,使G1G2、G3三點(diǎn)重合,重合后的點(diǎn)記為G,那么,在四面體SEFG中必有(

A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面

C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面,,,的中點(diǎn),的中點(diǎn).

(Ⅰ)證明:平面;

(Ⅱ)是線段上一點(diǎn),且直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案