5.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,則z=x-3y的最大值為2.

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.

解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式組對應的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{3}x-\frac{z}{3}$,
由圖象可知當直線y=$\frac{1}{3}x-\frac{z}{3}$經(jīng)過點C時,直線y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此時z最大,
由$\left\{\begin{array}{l}{x=y+4}\\{2x+y=11}\end{array}\right.$,得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,即C(5,1).
代入目標函數(shù)z=x-3y,
得z=5-3×1=2,
故答案為:2.

點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結合是解決問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.化簡:C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=22n-1-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若點A(a,b)(a>0,b>0)在直線2x+y-1=0上,則$\frac{1}{a}$+$\frac{2}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$)
(1)求tanθ的值;                          
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在(3x2-$\frac{2}{{\sqrt{x}}$)5的二項展開式中,常數(shù)項等于240.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若正實數(shù)x,y滿足10x+2y+60=xy,則xy的最小值是180.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若集合A={x|-1≤x≤1},B={x|0<x≤2},則A∩B=(  )
A.{x|0<x≤1}B.{x|-1≤x<0}C.{x|0≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列4個命題中:
①$α∈(0,\frac{π}{2})$時,sinα+cosα>1;
②$α∈(\frac{3π}{4},π)$時,sinα<|cosα|;
③$α∈(\frac{5π}{4},\frac{3π}{2})$時,sinα>cosα.
④$α∈(\frac{3π}{2},\frac{7π}{4})$時,sinα+cosα>0.
其中判斷正確的序號是①②(將正確的都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設O是△ABC的外心,a,b,c分別為角A,B,C對應的邊,已知b2-2b+c2=0,則$\overrightarrow{{B}C}•\overrightarrow{{A}{O}}$的范圍是( 。
A.$({-\frac{1}{4},2}]$B.$[{-\frac{1}{4},2})$C.$[{-2,\frac{1}{4}})$D.$({-2,\frac{1}{4}}]$

查看答案和解析>>

同步練習冊答案