【題目】2017年5月,“一帶一路”沿線的20國青年評選出了中國“新四大發(fā)明”:高鐵、支付寶、共享單車和網(wǎng)購.2017年末,“支付寶大行動”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計前5名顧客掃描紅包所得金額分別為5.5元,2.1元,3.3元,5.9元,4.7元,商家從這5名顧客中隨機抽取3人贈送臺歷.
(1)求獲得臺歷的三人中至少有一人的紅包超過5元的概率;
(2)統(tǒng)計一周內(nèi)每天使用支付寶付款的人數(shù)與商家每天的凈利潤元,得到7組數(shù)據(jù),如表所示,并作出了散點圖.
(i)直接根據(jù)散點圖判斷,與 哪一個適合作為每天的凈利潤的回歸方程類型.(的值取整數(shù))
(ii)根據(jù)(i)的判斷,建立關(guān)于的回歸方程,并估計使用支付寶付款的人數(shù)增加到35時,商家當(dāng)天的凈利潤.
參考數(shù)據(jù):
22.86 | 194.29 | 268.86 | 3484.29 |
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
【答案】(Ⅰ);(Ⅱ)(。┮娊馕; (ⅱ)見解析.
【解析】
(1)總的基本事件有10種,至少有1人的紅包超過5元的有9種,利用古典概型的計算公式可求概率.
(2)利用公式計算回歸方程并預(yù)測相應(yīng)的數(shù)據(jù).
(Ⅰ)記事件“獲得臺歷的三人中至少有一人的紅包超過5元”為事件,5名顧客中紅包超過5元的兩人分別記為,不足5元的三人分別記為,從這5名顧客中隨機抽取3人,共有抽取情況如下:
共10種.
其中至少有一人的紅包超過5元的是前9種情況,所以.
(Ⅱ)(。└鶕(jù)散點圖可判斷,選擇作為每天的凈利潤的回歸方程類型比較適合.
(ⅱ)由最小二乘法求得系數(shù)
,
所以
所以關(guān)于的回歸方程為.
當(dāng)時,商家當(dāng)天的凈利潤元,
故使用支付寶付款的人數(shù)增加到35時,預(yù)計商家當(dāng)天的凈利潤為352元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對時下的“抖音熱”,某校團委對“學(xué)生性別和喜歡抖音是否有關(guān)”作了一次調(diào)查,其中被調(diào)查的女生人數(shù)是男生人數(shù)的,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù)若有95%的把握認為是否喜歡抖音和性別有關(guān),則男生至少有( )人.
(K2≥k0) | 0.050 | 0.010 |
k0 | 3.841 | 6.635 |
A. 12B. 6C. 10D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度 (克/升)隨著時間 (天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能達到幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后再投放個單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新生嬰兒性別比是每100名女嬰對應(yīng)的男嬰數(shù).通過抽樣調(diào)查得知,我國2014年、2015年出生的嬰兒性別比分別為115.88和113.51.
(1)分別估計我國2014年和2015年男嬰的出生率(新生兒中男嬰的比率,精確到0.001);
(2)根據(jù)估計結(jié)果,你認為“生男孩和生女孩是等可能的”這個判斷可靠嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個試驗中,把一種血清注射到500只豚鼠體內(nèi),被注射前,這些豚鼠中150只有圓形細胞,250只有橢圓形細胞,100只有不規(guī)則形狀細胞;被注射后,沒有一個具有圓形細胞的豚鼠被感染,50個具有橢圓形細胞的豚鼠被感染,具有不規(guī)則形狀細胞的豚鼠全部被感染,根據(jù)試驗結(jié)果,估計具有下列類型的細胞的豚鼠被這種血清感染的概率;
(1)圓形細胞;
(2)橢圓形細胞;
(3)不規(guī)則形狀細胞.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個頂點落在半徑為的球的表面上,三角形有一個角為且其對邊長為3,球心到所在的平面的距離恰好等于半徑的一半,點為球面上任意一點,則三棱錐的體積的最大值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com