1.設函數(shù)$f(x)=\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}+tanθ$,其中$θ∈({\frac{π}{6}\;,\;\frac{π}{2}}]$,則f'(1)的取值范圍是[1,2).

分析 求出原函數(shù)的導函數(shù),得到f′(1),利用輔助角公式化積后由θ得范圍求得答案.

解答 解∵f′(x)=sinθ•x2+$\sqrt{3}$cosθ•x,
∴f′(1)=sinθ+$\sqrt{3}$cosθ=2sin(θ+$\frac{π}{3}$).
∵θ∈($\frac{π}{6}$,$\frac{π}{2}$],
∴θ+$\frac{π}{3}$∈($\frac{π}{2}$,$\frac{5π}{6}$].
∴sin(θ+$\frac{π}{3}$)∈[$\frac{1}{2}$,1).
∴2sin(θ+$\frac{π}{3}$)∈[1,2).
故答案為:[1,2).

點評 本題考查導數(shù)的運算,考查了三角函數(shù)的值域,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知$\overline a=(2\;,\;\;-1\;,\;\;3)$,$\overline b=(-1\;,\;\;4\;,\;\;-2)$,$\overline c=(7\;,\;\;5\;,\;\;λ)$.若$\overline a$,$\overline b$,$\overline c$共面,則$\overline c$在$\overline a$上的投影為$\frac{18\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.四棱錐8條棱所在的直線能祖成8對異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$\overrightarrow{a\;}$、$\overrightarrow{b\;}$滿足$|{\overrightarrow{b\;}}|=2|{\overrightarrow{a\;}}|=2\overrightarrow{a\;}•\overrightarrow{b\;}=2$,$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{a\;}})•$$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{b\;}})$=0,則$\overrightarrow{c\;}•$$\overrightarrow{a\;}$的最大值為(  )
A.$\frac{3}{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.$\frac{{4+\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=2x+3x的零點所在的一個區(qū)間( 。
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于集合A、B,我們把集合{x|x∈A且x∉B}叫做集合A與B的差集,記作A-B.
(1)若集合M={{x|y=$\sqrt{2x-1}$},N={y|y=1-x2},求M-N;
(2)若集合A={x|0<ax-1≤5},B=$\left\{{y|-\frac{1}{2}<y≤2}\right\}$,且A-B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出s的值為16,則輸入n(n∈N)的最小值為(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設m,n是兩條不同的直線,α,β是兩個不同的平面,有下列四個命題:
①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若m∥α,m∥β,則α∥β.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$,則z=x+y的最大值是1.

查看答案和解析>>

同步練習冊答案