已知F是拋物線y=2px2(p>0)的焦點(diǎn),M(x1,2)、N(x2,y2)、Q(x3,4)是這條拋物線上的三點(diǎn),且|MF|、|QF|、|NF|成等差數(shù)列.則y2的值為
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線的定義得拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,解得即可.
解答: 解:由拋物線y=2px2(p>0)得:x2=
1
2p
y
,
所以準(zhǔn)線方程為:y=-
1
8p
,
∴|MF|=2+
1
8p
,
|QF|=y2+
1
8p

|NF|=4+
1
8p
,
∵|MF|、|QF|、|NF|成等差數(shù)列,
∴2+
1
8p
+y2+
1
8p
=2(4+
1
8p
),
解得:y2=6.
故答案為:6
點(diǎn)評(píng):本題主要考察拋物線的定義,到焦點(diǎn)的距離等于到準(zhǔn)線的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二面角α-AB-β的平面角是銳角θ,α內(nèi)一點(diǎn)C到β的距離為3,點(diǎn)C到棱AB的距離為4,那么tanθ的值等于(  )
A、
3
4
B、
3
5
C、
7
7
D、
3
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某正三棱柱的三視圖如圖所示,其中正視圖是邊長(zhǎng)2的正方形,則俯視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y,a,b滿足條件
x≥0,y≥0
a≥0,b≥0
2x+y+a=6
x+2y+b=6

(1)試畫出點(diǎn)(x,y)的存在范圍;
(2)求2x+3y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)y=f(x)的定義域?yàn)镽,且當(dāng)x∈R時(shí),f(2+x)=f(2-x)恒成立,求證y=f(x)的圖象關(guān)于直線x=2對(duì)稱
(2)若函數(shù)y=log2|ax+1|的圖象的對(duì)稱軸是x=2,求非零實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地鐵的到站時(shí)間間隔是5分鐘.某人進(jìn)站到達(dá)列車門口等車時(shí)間超過(guò)2分鐘的概率是(  )
A、
1
5
B、
1
3
C、
3
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是調(diào)查某地某公司1000名員工的月收入后制作的直方圖.
(1)求該公司員工的月平均收入及員工月收入的中位數(shù);
(2)在收入為1000至1500元和收入為3500至4000元的員工中用分層抽樣的方法抽取一個(gè)容量15的樣本,員工甲、乙的月收入分別為1200元、3800元,求甲乙同時(shí)被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求實(shí)數(shù)x及數(shù)列{an}的通項(xiàng)公式an;
(2)若{an}是遞增數(shù)列,將數(shù)列{an}中的第2項(xiàng),第4項(xiàng),…,第2n項(xiàng)按原來(lái)的順序排成一個(gè)新數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4

(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-
π
12
,
π
12
]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案