在△ABC中,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b-c)sinB+(2c-b)sinC.
(Ⅰ)求角A的大;
(Ⅱ)若sinB+sinC=
3
,試判斷△ABC的形狀.
分析:(Ⅰ)利用余弦定理表示出cosA,然后根據(jù)正弦定理化簡(jiǎn)已知的等式,整理后代入表示出的cosA中,化簡(jiǎn)后求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(Ⅱ)由A為60°,利用三角形的內(nèi)角和定理得到B+C的度數(shù),用B表示出C,代入已知的sinB+sinC=
3
中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由B的范圍,求出這個(gè)角的范圍,利用特殊角的三角函數(shù)值求出B為60°,可得出三角形ABC三個(gè)角相等,都為60°,則三角形ABC為等邊三角形.
解答:解:(Ⅰ)由2asinA=(2b-c)sinB+(2c-b)sinC,
利用正弦定理化簡(jiǎn)得:2a2=(2b-c)b+(2c-b)c,…(2分)
整理得:bc=b2+c2-a2,
∴cosA=
b2+c2-a2
2bc
=
1
2
,…(4分)
又A為三角形的內(nèi)角,
則A=60°;…(5分)
(Ⅱ)∵A+B+C=180°,A=60°,
∴B+C=180°-60°=120°,即C=120°-B,…(6分)
代入sinB+sinC=
3
得:sinB+sin(120°-B)=
3
,…(7分)
∴sinB+sin120°cosB-cos120°sinB=
3
,…(8分)
3
2
sinB+
3
2
cosB=
3
,即sin(B+30°)=1,…(10分)
∴0<B<120°,
∴30°<B+30°<150°,
∴B+30°=90°,即B=60°,…(11分)
∴A=B=C=60°,
則△ABC為等邊三角形.…(12分).
點(diǎn)評(píng):此題考查了三角形形狀的判斷,正弦、余弦定理,兩角和與差的正弦函數(shù)公式,等邊三角形的判定,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案