求證f(x)=
2x+1x+2
在x∈(-∞,-2)上為增函數(shù).
分析:求導(dǎo)函數(shù),證明x∈(-∞,-2)時(shí),f′(x)>0,即可得到結(jié)論.
解答:證明:求導(dǎo)函數(shù)可得f′(x)=
2(x+2)-(2x+1)
(x+2)2
=
3
(x+2)2

∵x∈(-∞,-2),∴f′(x)>0
f(x)=
2x+1
x+2
在x∈(-∞,-2)上為增函數(shù).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,解題的關(guān)鍵是求導(dǎo)函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
2x-1a+2x+1
是奇函數(shù).
(1)求a的值;
(2)求證:f(x)在R上是增函數(shù);
(3)若對(duì)任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x-3
x
,g(x)=lnx

(1)試判斷當(dāng)x>0,g(x)與f(x)的大小關(guān)系;
(2)求證:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n-3(n∈N*);
(3)設(shè)A(x1,y1)、B(x2,y2)(x1<x2)是函數(shù)y=g(x)的圖象上的兩點(diǎn),且g′(x0)=
y1-y2
x2-x1
(其中g(shù)′(x)為g(x)的導(dǎo)函數(shù)),證明:x0∈(x1,x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x),如果對(duì)任意x∈(0,+∞),恒有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱f(x)為k階縮放函數(shù).
(1)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時(shí),f(x)=1+log
1
2
x
,求f(2
2
)
的值;
(2)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時(shí),f(x)=
2x-x2
,求證:函數(shù)y=f(x)-x在(1,8)上無零點(diǎn);
(3)已知函數(shù)f(x)為k階縮放函數(shù),且當(dāng)x∈(1,k]時(shí),f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)于f(x)=
2x-1
2x+1
,
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)求證對(duì)任意非零實(shí)數(shù)x=20∈[10,25],都有
f(x)
x
>0

查看答案和解析>>

同步練習(xí)冊(cè)答案