△ABC中,|
AB
|=5,|
AC
|=8,
AB
AC
=20,則|
BC
|為( 。
分析:通過向量的數(shù)量積求出A的余弦值,然后利用余弦定理求出|
BC
|
解答:解:因為△ABC中,|
AB
|=5,|
AC
|=8,
AB
AC
=20,
所以
AB
AC
=|
AB
||
AC
| cosA
=20,
5×8×cosA=20,
所以cosA=
1
2

由余弦定理a2=c2+b2-2bccosA,
|
BC
|2
=52+82-2×5×8×
1
2
=49,
|
BC
|
=7,
故選B.
點評:本題考查向量的數(shù)量積與余弦定理的應用,思路清晰,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=4,AC=8,∠BAC=60°,延長CB到D,使BA=BD,當E點在線段AB上移動時,若
AE
AC
AD
,當λ取最大值時,λ-μ的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(中數(shù)量積)在△ABC中,AB=
3
,BC=2,∠A=
π
2
,如果不等式|
BA
-t
BC
|≥|
AC
|
恒成立,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=7,BC=5,CA=6,則
AB
BC
=(  )
A、-19B、19
C、-38D、38

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,AB=4,AC=4
2
,∠BAC=45°,以AC的中線BD為折痕,將△ABD沿BD折起,構(gòu)成二面角A-BD-C.在面BCD內(nèi)作CE⊥CD,且CE=
2

(Ⅰ)求證:CE∥平面ABD;
(Ⅱ)如果二面角A-BD-C的大小為90,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,
AB
=
c
,
BC
=
a
、
CA
=
b
,若
a
b
=
b
c
,且
c
b
+
c
2
=0,則△ABC的形狀是
等腰直角三角形
等腰直角三角形

查看答案和解析>>

同步練習冊答案