20.函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的圖象的相鄰兩條對(duì)稱(chēng)軸間的距離是$\frac{π}{2}$.若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來(lái)的一半,得到g(x),則g(x)的解析式為( 。
A.g(x)=sin(4x+$\frac{π}{6}$)B.g(x)=sin(8x-$\frac{π}{3}$)C.g(x)=sin(x+$\frac{π}{6}$)D.g(x)=sin4x

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:∵函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的圖象的相鄰兩條對(duì)稱(chēng)軸間的距離是$\frac{1}{2}$T=$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2.
若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,可得y=sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=sin2x的圖象,
再把圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來(lái)的一半,得到g(x)=sin4x的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓E:(x+$\sqrt{3}$)2+y2=16,點(diǎn)F($\sqrt{3}$,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于點(diǎn)Q.
(1)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
(2)過(guò)點(diǎn)C(-2,0)作兩條互相垂直的直線l1,l2,若l1,l2分別與軌跡Γ相交于點(diǎn)A,B,直線AB與x軸交于點(diǎn)M,過(guò)點(diǎn)M作直線l交軌跡Γ于G,H兩點(diǎn),求△OGH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知某射擊運(yùn)動(dòng)員,每次擊中目標(biāo)的概率是0.8,則該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為( 。
A.0.85B.0.75C.0.8D.0.8192

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2sin(2x-$\frac{π}{3}}$),x∈R.
(1)在給定的平面直角坐標(biāo)系中,畫(huà)函數(shù)f(x)=2sin(2x-$\frac{π}{3}}$),x∈[0,π]的簡(jiǎn)圖;
(2)求f(x)=2sin(2x-$\frac{π}{3}}$),x∈[-π,0]的單調(diào)增區(qū)間;
(3)函數(shù)g(x)=2cos2x的圖象只經(jīng)過(guò)怎樣的平移變換就可得到f(x)=2sin(2x-$\frac{π}{3}}$),x∈R的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知α∈[$\frac{π}{4}$,π],β∈[π,$\frac{3π}{2}$],sin2α=$\frac{\sqrt{5}}{5}$,sin(β-α)=$\frac{\sqrt{10}}{10}$.
(1)求cos2α的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)滿足f(-x)=f(x),f(x+8)=f(x),且當(dāng)x∈(0,4]時(shí)f(x)=$\frac{ln(2x)}{x}$,關(guān)于x的不等式f2(x)+af(x)>0在[-2016,2016]上有且只有2016個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{1}{3}$ln6,ln2]B.(-ln2,-$\frac{1}{3}$ln6)C.(-ln2,-$\frac{1}{3}$ln6]D.(-$\frac{1}{3}$ln6,ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.等比數(shù)列{an}的首項(xiàng)為a,公比為q,前n項(xiàng)倒數(shù)的和為S,則S等于( 。
A.$\frac{a(1-{q}^{2})}{1-q}$B.$\frac{\frac{1}{a}({q}^{n}-1)}{q-1}$C.$\frac{(1-\frac{1}{{q}^{n}})}{a(1-\frac{1}{q})}$D.$\frac{a(1-\frac{1}{{q}^{n}})}{(1-\frac{1}{q})}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知正方形的四個(gè)頂點(diǎn)分別為O(0,0),A(1,0),B(1,1),C(0,1),將x軸、直線x=1和曲線C:y=x2所圍成的封閉區(qū)域記為Ω.若在正方形OABC內(nèi)任取一點(diǎn)P,則點(diǎn)P落在Ω內(nèi)的概率等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.-300°化成弧度制為(  )
A.$\frac{10π}{3}$B.$-\frac{5π}{6}$C.$-\frac{5π}{3}$D.$\frac{7π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案