【題目】工廠抽取了在一段時間內(nèi)生產(chǎn)的一批產(chǎn)品,測量一項質(zhì)量指標值,繪制了如圖所示的頻率分布直方圖.

(1)計算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(2)若質(zhì)量指標值在之內(nèi)為一等品.

(i)用樣本估計總體,問該工廠一天生產(chǎn)的產(chǎn)品是否有以上為一等品?

(ii)某天早上、下午分別抽檢了50件產(chǎn)品,完成下面的表格,并根據(jù)已有數(shù)據(jù),判斷是否有的把握認為一等品率與生產(chǎn)時間有關(guān)?

一等品個數(shù)

非一等品個數(shù)

總計

早上

36

50

下午

26

50

總計

附:.

0.25

0.15

0.10

0.050

0.010

0.001

1.323

2.072

2.706

3.841

6.635

10.828

參考數(shù)據(jù):.

【答案】(1),;(2)(i)有以上為一等品;(ii)詳見解析.

【解析】

(1)區(qū)間中點值和頻率的乘積,再分別相加可得平均數(shù),再利用方差公式可求方差;

(2)(i)由質(zhì)量指標值在之間的頻率可得一等品的百分比;

(ii)根據(jù)列聯(lián)表和卡方公式,求出卡方值,再進行判斷.

解:(1)由頻率分布直方圖可得

,

.

(2)(i)由(1)得

由圖可得質(zhì)量指標值在之間的頻率為,

所以有以上為一等品.

(ii)補全的表格如下.

一等品個數(shù)

非一等品個數(shù)

總計

早上

36

14

50

下午

26

24

50

總計

62

38

100

由此得,

所以有的把握認為一等品率與生產(chǎn)時間有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在底面為梯形的四棱錐S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求證:AC⊥SD;

(2)求三棱錐B﹣SAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方形中,中點(圖1.沿折起,使得(圖2)在圖2:

1)求證:平面平面;

2)在線段上是否存點,使得二面角的余弦值為,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結(jié)論:

①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;

②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強;

④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.

其中正確的結(jié)論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結(jié)論:

①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;

②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強;

④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.

其中正確的結(jié)論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次函數(shù)fx)=ax22bx+8

1)設(shè)集合P{12,3}Q{2,3,45},分別從集合PQ中隨機取一個數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

2)設(shè)集合P[13]Q[2,5],分別從集合PQ中隨機取一個實數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾位大學生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了解數(shù)學題獲取軟件激活碼的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22依此類推.求滿足如下條件的最小整數(shù)NN>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,,且存在不相等的實數(shù),,使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,邊,,所在直線的方程分別為,.

1)求邊上的高所在的直線方程;

2)若圓過直線上一點及點,當圓面積最小時,求其標準方程.

查看答案和解析>>

同步練習冊答案