【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是13張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3.從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2X表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列.

(注:若三個數(shù),滿足,則稱為這三個數(shù)的中位數(shù))

【答案】12)見解析

【解析】

1)首先理解是古典概型的概率,先求出基本事件的總數(shù),再求出所研究事件包含基本事件的個數(shù),然后代入古典概型概率計算公式求解.

2)按卡片上的數(shù)字相同和不同兩類進行分析,得到的所有可能值為12,3,然后分別計算出每隨機變量所對應(yīng)事件的概率,列出分布列即可.

1)由古典概型的概率計算公式知所求概率為

.

2的所有可能值為12,3,且

,

.

的分布列為

1

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準(zhǔn)線交于M、N兩點,MNF的面積為p,其中FE的焦點.

1)求拋物線E的方程;

2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OAOB,設(shè)點Q為圓C上任意一動點,求當(dāng)動點Q到直線l的距離最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,數(shù)列滿足.

1)證明是等差數(shù)列,并求的通項公式;

2)設(shè)數(shù)列滿足,記表示不超過x的最大整數(shù),求關(guān)于n的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

1)選5人排成一排;

2)排成前后兩排,前排4人,后排3人;

3)全體排成一排,甲不站排頭也不站排尾;

4)全體排成一排,女生必須站在一起;

5)全體排成一排,男生互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1,

ABC=DCB=60EPC上一點.

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形EPC中點,求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組共7人,利用假期參加義工活動,已知參加義工活動的次數(shù)為1,2,3的人數(shù)分別為2,2,3.現(xiàn)從這7人中隨機選出2人作為該組代表參加座談會:

(Ⅰ)設(shè)A為事件“選出的2人參加義工活動的次數(shù)之和為4”,求事件A發(fā)生的概率;

(Ⅱ)設(shè)X為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)當(dāng)a=1時,求函數(shù)的單調(diào)區(qū)間:

(Ⅱ)求函數(shù)的極值;

(Ⅲ)若函數(shù)有兩個不同的零點,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面為等邊三角形,的中點.

1)證明:;

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一棟6層樓房里,每個房間的門牌號均為三位數(shù),首位代表樓層號,后兩位代表房間號,如218表示的是第2層第18號房間,現(xiàn)已知有寶箱藏在如下圖18個房間里的某一間,其中甲同學(xué)只知道樓層號,乙同學(xué)只知道房間號,不知道樓層號,現(xiàn)有以下甲乙兩人的一段對話:

甲同學(xué)說:我不知道,你肯定也不知道;

乙同學(xué)說:本來我也不知道,但是現(xiàn)在我知道了;

甲同學(xué)說:我也知道了.

根據(jù)上述對話,假設(shè)甲乙都能做出正確的推斷,則藏有寶箱的房間的門牌號是______.

查看答案和解析>>

同步練習(xí)冊答案