【題目】1)設(shè)直線l過點(2,3)且與直線2x+y+1=0垂直,lx軸,y軸分別交于A、B兩點,求|AB|;

2)求過點A4-1)且在x軸和y軸上的截距相等的直線l的方程.

【答案】(1)2; (2)x+4y=0x+y-3=0

【解析】

1)由題意知直線l的斜率為,設(shè)l的方程為x-2y+c=0,代入(23)可得c=4,即可求出A,B的坐標(biāo)即可求出|AB|;

2)分類討論:直線過原點時和直線不過原點,分別求出即可。

1)由題意知直線l的斜率為,設(shè)l的方程為x-2y+c=0,代入(23)可得c=4,

x-2y+4=0

x=0,得y=2,令y=0,得x=-4,

A-4,0),B0,2),

|AB|==2;

2)當(dāng)直線不過原點時,設(shè)直線l的方程為x+y=c,代入(4,-1)可得c=3,此時方程為x+y-3=0,

當(dāng)直線過原點時,此時方程為x+4y=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓相切,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,

1)求圓的圓心坐標(biāo);

2)求線段的中點的軌跡的方程;

3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小波以游戲方式?jīng)Q定是參加學(xué)校合唱團(tuán)還是參加學(xué)校排球隊,游戲規(guī)則為:以0為起點,再從A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如圖)這8個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X.若X=0就參加學(xué)校合唱團(tuán),否則就參加學(xué)校排球隊.

(1)求小波參加學(xué)校合唱團(tuán)的概率;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求過點處的切線方程

(2)若函數(shù)有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點,過點的直線,分別與圓交于,兩點.

)若,,求的面積;

)若直線過點,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,.

(Ⅰ)求證:平面平面

(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.

(1)若直線與曲線有公共點,求傾斜角的取值范圍;

(2)設(shè)為曲線上任意一點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案