將正方形ABCD沿對(duì)角線(xiàn)BD折起,使平面ABD⊥平面CBD,ECD的中點(diǎn),則異面直線(xiàn)AE、BC所成角的正切值為_(kāi)_____.

解析:如圖所示,取BD中點(diǎn)O,連接AO、OE

AOBD.

∵平面ABD⊥平面CBD,∴AO⊥平面BCD,又OEBC,

∴∠AEO即為AEBC所成的角.

設(shè)正方形的邊長(zhǎng)為2,則OE=1,AO.∴tan∠AEO.

答案:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福州一中高三數(shù)學(xué)模擬試卷(一)(文科) 題型:013

邊長(zhǎng)為1的正方形ABCD沿對(duì)其角線(xiàn)BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線(xiàn)BC與平面ABD所成角的正弦值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案