已知函數(shù)f(x)=sin22x+
3
sin2x•cos2x.
(1)求f(x)的最小正周期;
(2)若x∈[
π
8
π
4
],且f(x)=1,求x的值.
考點:三角函數(shù)中的恒等變換應用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質
分析:(1)利用三角函數(shù)的倍角公式將函數(shù)進行化簡,即可求f(x)的最小正周期;
(2)根據(jù)f(x)=1,解方程即可.
解答: 解:(1)f(x)=
1-cos4x
2
+
3
sin2x•cos2x
=
1-cos4x
2
+
3
2
sin4x
…(2分)=sin(4x-
π
6
)+
1
2
.…(4分)
因為 T=
4
=
π
2
,所以f(x)的最小正周期是
π
2
.…(6分)
(2)由(1)得,f(x)=sin(4x-
π
6
)+
1
2

因為f(x)=1,所以sin(4x-
π
6
)=
1
2
…(7分)
π
8
≤x≤
π
4
,所以 
π
3
≤4x-
π
6
6
,…(10分)
所以x=
π
4
…(12分)
點評:本題主要考查三角函數(shù)的周期和方程的求解,根據(jù)倍角公式將函數(shù)化簡是解決本題的關鍵.,要求熟練三角函數(shù)的圖象和性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列語句:①太陽是繞著地球轉的
②禽流感能人傳人嗎?
③{1,2,3}⊆R;
④|x+a|;
⑤a+2
3
是有理數(shù)
⑥奇數(shù)的偶次方是偶數(shù)
其中命題的個數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(Ⅰ)求函數(shù)y=f(x)-x的單調區(qū)間;
(Ⅱ)證明:函數(shù)y=f(x)和y=g(x)在公共定義域內,g(x)-f(x)>2;
(Ⅲ)若存在兩個實數(shù)x1,x2且x1≠x2,滿足f(x1)=ax1,f(x2)=ax2.求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:若在(a,b)內f″(x)>0,則f(λ1x12x2)≤λ1f(x1)+λ2f(x2),其中λ12=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

焦點在y軸上,焦距是18,離心率e=
3
2
的雙曲線方程是(  )
A、
y2
36
-
x2
45
=1
B、
y2
45
-
x2
36
=1
C、
y2
16
-
x2
4
=1
D、
y2
4
-
x2
16
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
α
β
的夾角θ定義:
α
×
β
=|
α
||
β
|sinθ 若平面內互不相等的兩個非零向量
a
,
b
滿足:|
a
|=1,(
a
-
b
)與
b
的夾角為150°,
a
×
b
的最大值為( 。
A、2
B、
3
C、
2+
3
2
D、
2+
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)在x=x0處的導數(shù)不存在,則曲線y=f(x)(  )
A、在點(x0,f(x0))處的切線不存在
B、在點(x0,f(x0))處的切線可能存在
C、在點x0處不連續(xù)
D、在x=x0處極限不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C的對邊分別為a,b,c,且a>c,已知
BA
BC
=-3,cosB=-
3
7
,b=2
14
.求:
(Ⅰ)a和c的值;
(Ⅱ)sin(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足a2=6,3Sn=(n+1)an+n(n+1).
(1)求a1,a3;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案