如圖,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,四邊形EFGH為平行四邊形.

(1)求證:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,AB,CD所成的角為60°,求四邊形EFGH的面積的最大值.
考點(diǎn):直線(xiàn)與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出EF∥HG,從而得到EF∥平面ABD,進(jìn)而得到EF∥AB,由此能證明AB∥平面EFGH,同理CD平面EFGH.
(2)由EF∥AB,EH∥CD,得到∠FEH或其補(bǔ)角即為AB,CD所成的角.由此能求出四邊形EFGH的面積的最大值.
解答: (1)證明:∵四邊形EFGH為平行四邊形,∴EF∥HG.
∵HG?平面ABD,EF不在平面ABC內(nèi),
∴EF∥平面ABD.…(2分)
∵EF?平面ABD,平面ABD∩平面ABC=AB,
∴EF∥AB.
∵EF?平面EFGH,AB不包含于平面EFGH,
∴AB∥平面EFGH,…(5分)
同理CD平面EFGH.…(6分)
(2)解:∵EF∥AB,EH∥CD,
∴∠FEH或其補(bǔ)角即為AB,CD所成的角.
設(shè)EF=x,EH=y.
由EF∥AB,EH∥CD,得
EF
AB
=
CE
CA
EH
CD
=
AE
CA
,
EF
AB
+
EH
CD
=
CE
CA
+
AE
CA
=1
,
∵AB=4,CD=6,∴
x
4
+
y
6
=1
,∴y=6(1-
x
4
),
∴S△EFGH=xysin60°=
3
2
x•6(1-
x
4
)

=
3
3
4
[-(x-2)2+4]≤3
3
,
∴x=2時(shí),四邊形EFGH的面積有最大值是3
3
點(diǎn)評(píng):本題考查直線(xiàn)與平面平行的證明,考查四邊形面積最大值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱(chēng)系統(tǒng))A和B,系統(tǒng)A和B在任意時(shí)刻發(fā)生故障的概率分別為
1
5
和P.
(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為
19
20
,求P的值;
(Ⅱ)設(shè)系統(tǒng)A在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-2:矩陣與變換
已知二階矩陣M有特征值λ1=4及屬于特征值4的一個(gè)特征向量
e1
=(
 
2
3
),并有特征值λ2=-1及屬于特征值-1的一個(gè)特征向量
e2
=(
 
1
-1
),
α
=(
 
-1
1
).
(1)求矩陣M;
(2)求M5α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:正方形ABCD與正方形ABEF不共面,N、M分別在AE和BD上,AN=DM.
求證:MN∥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,圓O的參數(shù)方程為
x=-
2
+rcosθ
y=-1+rsinθ
,(θ為參數(shù),r>0)以O(shè)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2

(Ⅰ)寫(xiě)出直線(xiàn)l和圓O的普通方程;
(Ⅱ)并求出r為何值時(shí),直線(xiàn)l與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知BC是半徑為1的半圓O的直徑,A是半圓周上不同于B,C的點(diǎn),F(xiàn)為弧AC的中點(diǎn).在梯形ACDE中,DE∥AC且AC=2DE,平面ACDE⊥平面ABC.求證:
(1)直線(xiàn)AB⊥平面ACDE;    
(2)直線(xiàn)BE∥平面DOF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的三視圖及直觀(guān)圖如圖所示,M,N分別是A1B,B1C1的中點(diǎn),求證:MN∥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

生產(chǎn)方提供50箱的一批產(chǎn)品,其中有2箱不合格產(chǎn)品.采購(gòu)方接收該批產(chǎn)品的準(zhǔn)則是:從該批產(chǎn)品中任取5箱產(chǎn)品進(jìn)行檢測(cè),若至多有1箱不合格產(chǎn)品,便接收該批產(chǎn)品.問(wèn):該批產(chǎn)品被接收的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果隨機(jī)變量X~B(100,0.2),那么D(4X+3)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案