(12分)已知函數(shù)f(x)=sinωx(cosωx+sinωx)+(ω∈R,x∈R)最小正周期為π,且圖象關(guān)于直線x=π對稱.
(1)求f(x)的最大值及對應(yīng)的x的集合;
(2)若直線y=a與函數(shù)y=1-f(x),x∈[0,]的圖象有且只有一個公共點,求實數(shù)a的范圍.
(1)最大值為2.此時x=k-,kZ;(2)
【解析】本試題主要是考查了三角函數(shù)的圖像與性質(zhì),以及三角恒等變換的綜合運用。求解函數(shù)圖像與圖像的交點問題。
(1)先將三角函數(shù)化簡為單一三角函數(shù),利用對稱軸的性質(zhì),求解最值
(2)由于三角函數(shù)圖像與直線y=a有且只有一個公點,則結(jié)合圖像法得到參數(shù)a的取值范圍。
解:(1)f(x)=
=…………………………2分
= T=………………3分
若=1 , 此時不是對稱軸………4分
若=-1 ,此時是對稱軸…5分
最大值為2.此時2x+=2k-x=k-,kZ……………………6分
(2) ,的圖象與直線y=a的圖象有且只有一個公點
…………9分
……………………12分
科目:高中數(shù)學(xué) 來源:張家港市后塍高級中學(xué)2006~2007年第一學(xué)期高三數(shù)學(xué)十二月調(diào)研測試卷 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(12) 題型:013
已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點,且在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0;④若對x∈[-2,2],k≤恒成立,則k的最大值為2.其中正確命題的個數(shù)為
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2012屆高三10月月考數(shù)學(xué)文科試題 題型:044
已知函數(shù),g(x)=lnx.
(1)設(shè)F(x)=f(x)+g(x),當(dāng)a=2時,求F(x)在上的單調(diào)區(qū)間;
(2)在條件(1)下,若對任意(e為自然對數(shù)的底數(shù))均有|F(x1)-F(x2)|<3m+-6恒成立,求實數(shù)m的取值范圍;
(3)設(shè)G(x)=f(x)-g(x)在x=1處的切線與坐標(biāo)軸圍成的三角形面積為S,存在α∈N*且a≠4使得t≤S成立,求最大的整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3+x2在x=-1處取得極值,記g(x)=,程序框圖如圖所示,若輸出的結(jié)果S>,則判斷框中可以填入的關(guān)于n的判斷條件是 ( )
A.n≤2 011? B.n≤2 012?
C.n>2 011? D.n>2 012?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ax3+x2在x=-1處取得極大值,記g(x)=。程序框圖如圖所示,若輸出的結(jié)果S=,則判斷框中可以填入的關(guān)于n的判斷條件是( )
A.n≤2013 B.n≤2014 C.n>2013 D.n>2014
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com