翔安一中一位高二班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長(zhǎng)期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:

積極參加班級(jí)工作

不太主動(dòng)參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計(jì)

24

26

50

(I)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?

(II)用獨(dú)立性檢驗(yàn)的方法判斷:學(xué)習(xí)的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?

獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量計(jì)算公式:

解:(I)記事件A為"抽到積極參加班級(jí)工作的學(xué)生".

      所以

       (II)的觀測(cè)值為:>10.838

      答:有的把握認(rèn)為學(xué)習(xí)的積極性與對(duì)待班級(jí)工作態(tài)度有關(guān)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長(zhǎng)期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 不太主動(dòng)參加班級(jí)工作 合計(jì)
學(xué)習(xí)積極性高 18 7 25
學(xué)習(xí)積極性一般 6 19 25
合計(jì) 24 26 50
(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太積極參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)學(xué)生的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對(duì)的概率為
1
2
,乙,丙做對(duì)的概率分別為m,n(m>n),且三位學(xué)生是否做對(duì)相互獨(dú)立.記ξ為這三位學(xué)生中做對(duì)該題的人數(shù),其分布列為:
ξ 0 1 2 3
P
1
4
a b
1
24
(1)求至少有一位學(xué)生做對(duì)該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

翔安一中一位高二班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行長(zhǎng)期的調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:
積極參加班級(jí)工作 不太主動(dòng)參加班級(jí)工作 合計(jì)
學(xué)習(xí)積極性高 18 7 25
學(xué)習(xí)積極性一般 6 19 25
合計(jì) 24 26 50
(Ⅰ)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?
(Ⅱ)用獨(dú)立性檢驗(yàn)的方法判斷:學(xué)習(xí)的積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量計(jì)算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高三開(kāi)學(xué)檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對(duì)的概率為,乙,丙做對(duì)的概率分別為, (),且三位學(xué)生是否做對(duì)相互獨(dú)立.記為這三位學(xué)生中做對(duì)該題的人數(shù),其分布列為:

0

1

2

3

(Ⅰ)求至少有一位學(xué)生做對(duì)該題的概率;

(Ⅱ)求,的值;

(Ⅲ)求的數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案