已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.
【答案】分析:(Ⅰ)直接求出函數(shù)的導(dǎo)函數(shù),轉(zhuǎn)化成不等式恒成立問題解決即可;
(Ⅱ)利用韋達(dá)定理先求出|x1-x2|,變?yōu)椴坏仁胶愠闪栴},再構(gòu)造函數(shù)利用函數(shù)的導(dǎo)數(shù)求最值即可解決.
解答:解:(Ⅰ)f'(x)=4+2ax-2x2,∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對(duì)x∈[-1,1]恒成立,
即x2-ax-2≤0對(duì)x∈[-1,1]恒成立.①
設(shè)φ(x)=x2-ax-2,
①??-1≤a≤1,
∵對(duì)x∈[-1,1],只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0
∴A={a|-1≤a≤1}.

(Ⅱ)由,得x=0,或x2-ax-2=0,
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩非零實(shí)根,x1+x2=a,x1x2=-2,
從而|x1-x2|=
∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,
當(dāng)且僅當(dāng)m2+tm+1≥3對(duì)任意t∈[-1,1]恒成立,
即m2+tm-2≥0對(duì)任意t∈[-1,1]恒成立.②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
②?g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,
其取值范圍是{m|m≥2,或m≤-2}.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用和不等式等有關(guān)知識(shí),考查數(shù)形結(jié)合及分類討論思想和靈活運(yùn)用數(shù)學(xué)知識(shí)分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)g(x)滿足:當(dāng)x≠0時(shí),xg′(x)<0(其中g(shù)′(x)為函數(shù)g(x)的導(dǎo)函數(shù));定義在R上的奇函數(shù)f(x)滿足:f(x+2)=-f(x),在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且函數(shù)y=f(x)在x=-5處的切線方程為y=-6.若關(guān)于x的不等式g[f(x)]≥g(a2-a+4)對(duì)x∈[6,10]恒成立,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宜賓一模)已知f(x)是在R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)的圖象在區(qū)間[-4,4]上與x軸的交點(diǎn)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)是在R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)的圖象在區(qū)間[-4,4]上與x軸的交點(diǎn)的個(gè)數(shù)為


  1. A.
    7
  2. B.
    8
  3. C.
    9
  4. D.
    10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省宜賓市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知f(x)是在R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)的圖象在區(qū)間[-4,4]上與x軸的交點(diǎn)的個(gè)數(shù)為( )
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)=數(shù)學(xué)公式-lnx在區(qū)間(1,2)內(nèi)有一個(gè)零點(diǎn)x0,若用二分法求x0的近似值(精確度0.1),則需要將區(qū)間等分的次數(shù)為


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6

查看答案和解析>>

同步練習(xí)冊(cè)答案