在某服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售。
⑴試建立銷售價y與周次x之間的函數(shù)關系式;
⑵若這種時裝每件進價Z與周次次之間的關系為Z=,1≤≤16,且為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

 ⑵在第6周時出售每件銷售利潤最,最大元.

解析試題分析:(1)
(2)設每件銷售利潤為元,
當1≤≤6時,= y-Z=2+18+ 0.125(-8)-12=+14
=6時,最大值=
當6<<12時,= y-Z="30+" 0.125(-8)-12=0.125(-8)+18
=8時,最大值=18
當12≤≤16時= y-Z=-2+54+ 0.125(-8)-12=0.125(-16)+18
=16時,最大值=18
綜上所述:在第6周時出售每件銷售利潤最,最大元.
考點:二次函數(shù)的應用
點評:本題考查的是二次函數(shù)的運用,由于計算量大,考生在做這些題的時候要耐心細心.難
度中上.此題是分段函數(shù),題目所涉及的內(nèi)容在求解過程中,要注意分段函數(shù)問題先分段解
決,最后再整理、歸納得出最終結(jié)論,另外還要考慮結(jié)果是否滿足各段的要求,這是解此類
綜合應用題目的特點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響。
據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:

所用的時間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)。
(1)為了盡最大可能在各自允許的時間內(nèi)將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑;
(2)若通過公路1、公路2的“一次性費用”分別為3.2萬元、1.6萬元(其它費用忽略不計),此項費用由生產(chǎn)商承擔。如果生產(chǎn)商恰能在約定日期當天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天銷售商將少支付給生產(chǎn)商2萬元。如果汽車A、B長期按(1)所選路徑運輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大。
(注:毛利潤=(銷售商支付給生產(chǎn)商的費用)—(一次性費用))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術水平的限制,會產(chǎn)生一些次品,根據(jù)以往的經(jīng)驗知道,其次品率P與日產(chǎn)量(件)之間近似滿足關系:
(其中為小于96的正整常數(shù))
(注:次品率P=,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損A/2元,故廠方希望定出合適的日產(chǎn)量。
試將生產(chǎn)這種儀器每天的贏利T(元)表示為日產(chǎn)量(件的函數(shù));
當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計算
(1)    (2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求實數(shù)m的值;
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當范圍內(nèi),決定對這種食品生產(chǎn)廠家提供政府補貼,設這種食品的市場價格為元/千克,政府補貼為元/千克,根據(jù)市場調(diào)查,當時,這種食品市場日供應量萬千克與市場日需量萬千克近似地滿足關系:,。當市場價格稱為市場平衡價格。
(1)將政府補貼表示為市場平衡價格的函數(shù),并求出函數(shù)的值域;
(2)為使市場平衡價格不高于每千克20元,政府補貼至少為每千克多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當時,有(其中為自然對數(shù)的底,).
(1)求函數(shù)的解析式;
(2)設,,求證:當時,;
(3)試問:是否存在實數(shù),使得當時,的最小值是3?如果存在,求出實數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1;B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤和投資單位:萬元).

(1)分別將AB兩種產(chǎn)品的利潤表示為投資的函數(shù)關系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?

查看答案和解析>>

同步練習冊答案